Symbolic Math Toolbox

For Use with MATLAB ${ }^{\text {® }}$

Computation

Visualization

- Programming

User's Guide
The MathWorks
Version 3

How to Contact The MathWorks:

www.mathworks.com
comp.soft-sys.matlab

support@mathworks.com
suggest@mathworks.com
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com
Web
Newsgroup
Technical support
Product enhancement suggestions
Bug reports
Documentation error reports
Order status, license renewals, passcodes
Sales, pricing, and general information
508-647-7000
508-647-7001
The MathWorks, Inc.
Phone

3 Apple Hill Drive
Natick, MA 01760-2098

Fax
Mail

For contact information about worldwide offices, see the MathWorks Web site.

Symbolic Math Toolbox User's Guide

© COPYRIGHT 1993-2005 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox are registered trademarks of The MathWorks, Inc. Other product or brand names are trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see www. mathworks.com/patents for more information.

Revision History

August 1993	First printing October 1994	
Second printing		
May 1997	Third printing	Revised for Version 2
May 2000	Fourth printing	Minor changes
June 2001	Fifth printing	Minor changes
July 2002	Online only	Revised for Version 2.1.3 (Release 13)
October 2002	Online only	Revised for Version 3.0.1
December 2002	Sixth printing	
June 2004	Seventh printing Revised for Version 3.1 (Release 14)	
October 2004	Online only	Revised for Version 3.1.1 (Release 14SP1)
March 2005	Online only	Revised for Version 3.1.2 (Release 14SP2)
September 2005	Online only	Revised for Version 3.1.3 (Release 14SP3)

Getting Started

What Are the Symbolic Math Toolboxes? 1-2
The Symbolic Math Toolboxes 1-3
Symbolic Objects 1-4
Creating Symbolic Variables and Expressions 1-6
The findsym Command 1-8
The subs Command 1-9
The Default Symbolic Variable 1-10
Symbolic and Numeric Conversions 1-11
Constructing Real and Complex Variables 1-13
Creating Abstract Functions 1-14
Creating Symbolic Math Functions 1-16
Using Symbolic Expressions 1-16
Creating an M-File 1-16
Using the Symbolic Math Toolbox
2
Calculus 2-2
Differentiation 2-2
Limits 2-8
Integration 2-11
Symbolic Summation 2-18
Taylor Series 2-18
Calculus Example 2-20
Extended Calculus Example 2-28
Simplifications and Substitutions 2-41
Simplifications 2-41
Substitutions 2-50
Variable-Precision Arithmetic 2-58
Overview 2-58
Example: Using the Different Kinds of Arithmetic 2-59
Another Example 2-61
Linear Algebra 2-63
Basic Algebraic Operations 2-63
Linear Algebraic Operations 2-64
Eigenvalues 2-68
Jordan Canonical Form 2-74
Singular Value Decomposition 2-75
Eigenvalue Trajectories 2-78
Solving Equations 2-89
Solving Algebraic Equations 2-89
Several Algebraic Equations 2-90
Single Differential Equation 2-93
Several Differential Equations 2-95
Special Mathematical Functions 2-98
Diffraction 2-100
Using Maple Functions 2-103
Simple Example 2-103
Vectorized Example 2-105
Debugging 2-107
Extended Symbolic Math Toolbox 2-109
Packages of Library Functions 2-109
Procedure Example 2-111

Reference

Functions - Categorical List 3-2
Calculus 3-2
Linear Algebra 3-2
Simplification 3-3
Solution of Equations 3-3
Variable Precision Arithmetic 3-3
Arithmetic Operations 3-3
Special Functions 3-4
Access To Maple 3-4
Pedagogical and Graphical Applications 3-5
Conversions 3-5
Basic Operations 3-6
Integral Transforms 3-6
Functions - Alphabetical List 3-7
Index

Getting Started

This section introduces you to the Symbolic Math Toolbox, and describes how to create and use symbolic objects. The section covers the following topics:

What Are the Symbolic Math Toolboxes? (p. 1-2)
Symbolic Objects (p. 1-4)

Creating Symbolic Variables and Expressions (p. 1-6)
The subs Command (p. 1-9)
Symbolic and Numeric Conversions (p. 1-11)

Creating Symbolic Math Functions (p. 1-16)

Overview of the toolboxes

Describes symbolic objects and how they differ from standard MATLAB ${ }^{\circledR}$ data types

How to create symbolic objects

How to substitute numbers for variables
How to convert between symbolic objects and numeric values

How to create functions that operate on symbolic objects

What Are the Symbolic Math Toolboxes?

The Symbolic Math Toolboxes incorporate symbolic computation into the numeric environment of MATLAB. These toolboxes supplement MATLAB numeric and graphical facilities with several other types of mathematical computation, which are summarized in following table.

Facility	Covers
Calculus	Differentiation, integration, limits, summation, and Taylor series
Linear Algebra	Inverses, determinants, eigenvalues, singular value decomposition, and canonical forms of symbolic matrices
Simplification	Methods of simplifying algebraic expressions
Solution of Equations	Symbolic and numerical solutions to algebraic and differential equations
Special Mathematical Functions	Special functions of classical applied mathematics
Variable-Precision Arithmetic	Numerical evaluation of mathematical expressions to any specified accuracy
Transforms	Fourier, Laplace, z-transform, and corresponding inverse transforms

The computational engine underlying the toolboxes is the kernel of Maple ${ }^{\circledR}$, a system developed primarily at the University of Waterloo, Canada and, more recently, at the Eidgenössiche Technische Hochschule, Zürich, Switzerland. Maple is marketed and supported by Waterloo Maple, Inc.

These versions of the Symbolic Math Toolboxes are designed to work with MATLAB 6 or greater and Maple 8.

The Symbolic Math Toolboxes

There are two toolboxes:

- The basic Symbolic Math Toolbox is a collection of more than 100 MATLAB functions that provide access to the Maple kernel using a syntax and style that is a natural extension of the MATLAB language. The basic toolbox also allows you to access functions in the Maple linear algebra package.
- The Extended Symbolic Math Toolbox augments this functionality to include access to all nongraphics Maple packages, Maple programming features, and user-defined procedures. With both toolboxes, you can write your own M-files to access Maple functions and the Maple workspace.

If you already have a copy of the Maple 8 library, you can use it instead of the copy of the Maple Library that is distributed with the Symbolic Math toolboxes by changing the path to the library in the MATLAB M-file mapleinit.m. See the reference page for mapleinit to learn how to do this.

Symbolic Objects

The Symbolic Math Toolbox defines a new MATLAB data type called a symbolic object. (See "Programming and Data Types" in the online MATLAB documentation for an introduction to MATLAB classes and objects.) Internally, a symbolic object is a data structure that stores a string representation of the symbol. The Symbolic Math Toolbox uses symbolic objects to represent symbolic variables, expressions, and matrices. The actual computations involving symbolic objects are performed primarily by Maple, mathematical software developed by Waterloo Maple, Inc.

The following example illustrates the difference between a standard MATLAB data type, such as double, and the corresponding symbolic object. The MATLAB command
sqrt(2)
returns a floating-point decimal number:
ans =
1.4142

On the other hand, if you convert 2 to a symbolic object using the sym command, and then take its square root by entering

```
a = sqrt(sym(2))
```

the result is

> a =
$2^{\wedge}(1 / 2)$
MATLAB gives the result $2^{\wedge}(1 / 2)$, which means $2^{1 / 2}$, using symbolic notation for the square root operation, without actually calculating a numerical value. MATLAB records this symbolic expression in the string that represents $2^{\wedge}(1 / 2)$. You can always obtain the numerical value of a symbolic object with the double command:

```
double(a)
ans =
    1.4142
```

Notice that the result is indented, which tells you it has data type double. Symbolic results are not indented.

When you create a fraction involving symbolic objects, MATLAB records the numerator and denominator. For example:

```
sym(2)/sym(5)
ans =
2/5
```

MATLAB performs arithmetic on symbolic objects differently than it does on standard data types. If you add two fractions that are of data type double, MATLAB gives the answer as a decimal fraction. For example:
$2 / 5+1 / 3$
ans $=$
0.7333

If you add the same fractions as symbolic objects, MATLAB finds their common denominator and combines them by the usual procedure for adding rational numbers:
sym(2)/sym(5) + sym(1)/sym(3)
ans $=$
11/15
The Symbolic Math Toolbox enables you to perform a variety of symbolic calculations that arise in mathematics and science. These are described in detail in Chapter 2, "Using the Symbolic Math Toolbox."

Creating Symbolic Variables and Expressions

The sym command lets you construct symbolic variables and expressions. For example, the commands

```
x = sym('x')
a = sym('alpha')
```

create a symbolic variable x that prints as x and a symbolic variable a that prints as alpha.

Suppose you want to use a symbolic variable to represent the golden ratio

$$
\rho=\frac{1+\sqrt{5}}{2}
$$

The command

```
rho = sym('(1 + sqrt(5))/2')
```

achieves this goal. Now you can perform various mathematical operations on rho. For example,

```
f = rho^2 - rho - 1
```

returns
$f=$
$\left(1 / 2+1 / 2^{*} 5^{\wedge}(1 / 2)\right)^{\wedge} 2-3 / 2-1 / 2^{*} 5^{\wedge}(1 / 2)$
You can simplify this answer by entering
simplify (f)
which returns
ans =
0
Now suppose you want to study the quadratic function $f=a x^{2}+b x+c$. One approach is to enter the command

$$
f=\operatorname{sym}\left({ }^{\prime} a^{*} x^{\wedge} 2+b * x+c^{\prime}\right)
$$

which assigns the symbolic expression $a x^{2}+b x+c$ to the variable f. However, in this case, the Symbolic Math Toolbox does not create variables corresponding to the terms of the expression, a, b, c, and x. To perform symbolic math operations (e.g., integration, differentiation, substitution, etc.) on f, you need to create the variables explicitly. A better alternative is to enter the commands

```
    a = sym('a')
    b = sym('b')
    c = sym('c')
    x = sym('x')
```

or simply

```
syms a b c x
```

Then enter

```
f = sym('a*x^2 + b*x + c')
```

In general, you can use sym or syms to create symbolic variables. We recommend you use syms because it requires less typing.

Note To create a symbolic expression that is a constant, you must use the sym command. For example, to create the expression whose value is 5 , enter $f=\operatorname{sym}\left({ }^{\prime} 5\right.$ '). Note that the command $f=5$ does not define f as a symbolic expression.

If you set a variable equal to a symbolic expression, and then apply the syms command to the variable, MATLAB removes the previously defined expression from the variable. For example,

```
syms a b
f = a + b
```

returns

$$
\begin{aligned}
& f= \\
& a+b
\end{aligned}
$$

If you then enter
 syms f
 f

MATLAB returns

```
f =
f
```

You can use the syms command to clear variables of definitions that you assigned to them previously in your MATLAB session. However, syms does not clear the properties of the variables in the Maple workspace. See "Clearing Variables in the Maple Workspace" on page 1-13 for more information.

The findsym Command

To determine what symbolic variables are present in an expression, use the findsym command. For example, given the symbolic expressions fand g defined by

```
syms a b n t x z
f = x^n; g = sin(a*t + b);
```

you can find the symbolic variables in f by entering

```
findsym(f)
ans =
n, x
```

Similarly, you can find the symbolic variables in g by entering

```
findsym(g)
ans =
a, b, t
```


The subs Command

You can substitute a numerical value for a symbolic variable using the subs command. For example, to substitute the value $x=2$ in the symbolic expression,

$$
f=2^{*} x^{\wedge} 2-3^{*} x+1
$$

enter the command
subs(f,2)
This returns $f(2)$:
ans $=$
3

Note To substitute a matrix A into the symbolic expression f, use the command polyvalm(sym2poly (f), A), which replaces all occurrences of x by A, and replaces the constant term of f with the constant times an identity matrix.

When your expression contains more than one variable, you can specify the variable for which you want to make the substitution. For example, to substitute the value $x=3$ in the symbolic expression,

```
syms x y
f = x^2*y + 5*x*sqrt(y)
```

enter the command
subs(f, x, 3)
This returns
ans $=$
$9 * y+15 * y^{\wedge}(1 / 2)$

On the other hand, to substitute $y=3$, enter

```
subs(f, y, 3)
ans =
3* (^2+5* ** 3^(1/2)
```


The Default Symbolic Variable

If you do not specify a variable to substitute for, MATLAB chooses a default variable according to the following rule. For one-letter variables, MATLAB chooses the letter closest to x in the alphabet. If there are two letters equally close to x, MATLAB chooses the one that comes later in the alphabet. In the preceding function, subs ($f, 3$) returns the same answer as subs(f, $x, 3)$.

You can use the findsym command to determine the default variable. For example,

```
    syms s t
    g = s + t;
    findsym(g,1)
```

returns the default variable:
ans =
t
See "Substitutions" on page 2-50 to learn more about substituting for variables.

Symbolic and Numeric Conversions

Consider the ordinary MATLAB quantity

$$
t=0.1
$$

The sym function has four options for returning a symbolic representation of the numeric value stored in t. The ' f ' option

```
sym(t,'f')
```

returns a symbolic floating-point representation
'1.999999999999a' ${ }^{\prime *}$ 2^ $^{\wedge}(-4)$
The ' r ' option
sym(t, r ')
returns the rational form
1/10
This is the default setting for sym. That is, calling sym without a second argument is the same as using sym with the ' r ' option:

```
sym(t)
ans =
1/10
```

The third option 'e ' returns the rational form of t plus the difference between the theoretical rational expression for t and its actual (machine) floating-point value in terms of eps (the floating-point relative accuracy):

```
sym(t,'e')
ans =
1/10+eps/40
```

The fourth option 'd' returns the decimal expansion of t up to the number of significant digits specified by digits:
sym(t, 'd')

```
ans =
.10000000000000000555111512312578
```

The default value of digits is 32 (hence, sym (t, ' d ') returns a number with 32 significant digits), but if you prefer a shorter representation, use the digits command as follows:

```
digits(7)
sym(t,'d')
ans =
. }100000
```

A particularly effective use of sym is to convert a matrix from numeric to symbolic form. The command

$$
A=\operatorname{hilb}(3)
$$

generates the 3-by-3 Hilbert matrix:
$A=$

1.0000	0.5000	0.3333
0.5000	0.3333	0.2500
0.3333	0.2500	0.2000

By applying sym to A

$$
A=\operatorname{sym}(A)
$$

you can obtain the symbolic (infinitely precise) form of the 3-by-3 Hilbert matrix:

```
A =
[ 1, 1/2, 1/3]
[ 1/2, 1/3, 1/4]
[ 1/3, 1/4, 1/5]
```


Constructing Real and Complex Variables

The sym command allows you to specify the mathematical properties of symbolic variables by using the 'real' option. That is, the statements

```
x = sym('x','real'); y = sym('y','real');
```

or more efficiently

```
syms x y real
z = x + i*y
```

create symbolic variables x and y that have the added mathematical property of being real variables. Specifically this means that the expression

$$
f=x^{\wedge} 2+y^{\wedge} 2
$$

is strictly nonnegative. Hence, z is a complex variable and can be manipulated as such. Thus, the commands

```
conj(x), conj(z), expand(z*conj(z))
```

return
$x, x-i^{*} y, x^{\wedge} 2+y^{\wedge} 2$
respectively. The conj command is the complex conjugate operator for the toolbox. If $\operatorname{con} j(x)==x$ returns 1 , then x is a real variable.

Clearing Variables in the Maple Workspace

When you declare x to be real with the command

```
syms x real
```

x becomes a symbolic object in the MATLAB workspace and a positive real variable in the Maple kernel workspace. If you later want to remove the real property from x, enter

```
syms x unreal
```

Note that entering
clear x
only clears x in the MATLAB workspace. If you then enter syms x, MATLAB still treats x as a positive real number.

Creating Abstract Functions

If you want to create an abstract (i.e., indeterminant) function $f(x)$, type

```
f = sym('f(x)')
```

Then f acts like $f(x)$ and can be manipulated by the toolbox commands. For example, to construct the first difference ratio, type

```
df = (subs(f,'x','x+h') - f)/'h'
```

```
syms x h
```

syms x h
df = (subs(f,x,x+h)-f)/h

```
or
which returns
```

df =
(f(x+h)-f(x))/h

```

This application of sym is useful when computing Fourier, Laplace, and \(z\)-transforms.

\section*{Using sym to Access Maple Functions}

Similarly, you can access Maple's factorial function \(k\) ! using sym:
```

kfac = sym('k!')

```

To compute 6! or n!, type
```

syms k n
subs(kfac,k,6), subs(kfac,k,n)
ans =
7 2 0
ans =
n!

```

\section*{Example: Creating a Symbolic Matrix}

A circulant matrix has the property that each row is obtained from the previous one by cyclically permuting the entries one step forward. You can create the circulant matrix A whose elements are \(\mathrm{a}, \mathrm{b}\), and c , using the commands
```

syms a b c
A = [a b c; b c a; c a b]

```
which return
A \(=\)
[ a, b, c ]
[ b, c, a ]
[ c, a, b ]
Since A is circulant, the sum over each row and column is the same. To check this for the first row and second column, enter the command
```

sum(A(1,:))

```
which returns
```

ans =
a+b+c

```

The command
```

sum(A(1,:)) == sum(A(:,2)) % This is a logical test.

```
returns
ans \(=\)
1
Now replace the \((2,3)\) entry of A with beta and the variable b with alpha. The commands
```

syms alpha beta;
A(2,3) = beta;
A = subs(A,b,alpha)

```
return
```

A =
[a, alpha, c]
[alpha, c, beta]
[c, a, alpha]

```

From this example, you can see that using symbolic objects is very similar to using regular MATLAB numeric objects.

\section*{Creating Symbolic Math Functions}

There are two ways to create functions:
- Use symbolic expressions
- Create an M-file

\section*{Using Symbolic Expressions}

The sequence of commands
```

syms x y z
r = sqrt(x^2 + y^2 + z^^2)
t = atan(y/x)
f = sin(x*y)/(x*y)

```
generates the symbolic expressions \(r\), \(t\), and \(f\). You can use diff, int, subs, and other Symbolic Math Toolbox functions to manipulate such expressions.

\section*{Creating an M-File}

M-files permit a more general use of functions. Suppose, for example, you want to create the sinc function \(\sin (x) / x\). To do this, create an M-file in the @sym directory:
```

function z = sinc(x)
%SINC The symbolic sinc function
% sin(x)/x. This function
% accepts a sym as the input argument.
if isequal(x,sym(0))
z = 1;
else
z = sin(x)/x;
end

```

You can extend such examples to functions of several variables. See the MATLAB topic "Programming and Data Types" in the online MATLAB documentation for a more detailed discussion on object-oriented programming.

\section*{Using the Symbolic Math Toolbox}

> This section explains how to use the Symbolic Math Toolbox to perform many common mathematical operations. The section covers the following topics:

Calculus (p. 2-2)

Simplifications and Substitutions (p. 2-41)

Variable-Precision Arithmetic (p. 2-58)

Linear Algebra (p. 2-63)

Solving Equations (p. 2-89)

Special Mathematical Functions (p. 2-98)

Using Maple Functions (p. 2-103)

Extended Symbolic Math Toolbox (p. 2-109)

Differentiation, integration, limits, summation, and Taylor series

Methods of simplifying algebraic expressions

Numerical evaluation of mathematical expressions to any specified accuracy

Inverses, determinants, eigenvalues, singular value decomposition, and canonical forms of symbolic matrices

Symbolic and numerical solutions to algebraic and differential equations

Special functions of classical applied mathematics

How to use the maple command to access Maple functions directly

How to access all nongraphics Maple packages, Maple programming features, and Maple procedures

\section*{Calculus}

The Symbolic Math Toolbox provides functions to do the basic operations of calculus. The following sections describe these functions:
- "Differentiation" on page 2-2
- "Limits" on page 2-8
- "Integration" on page 2-11
- "Symbolic Summation" on page 2-18
- "Taylor Series" on page 2-18
- "Calculus Example" on page 2-20
- "Extended Calculus Example" on page 2-28

\section*{Differentiation}

To illustrate how to take derivatives using the Symbolic Math Toolbox, first create a symbolic expression:
```

syms x
f = sin(5*x)

```

The command
```

diff(f)

```
differentiates \(f\) with respect to \(x\) :
```

ans =

```
5* \(\cos \left(5^{*} x\right)\)

As another example, let
\[
g=\exp (x) * \cos (x)
\]
where \(\exp (x)\) denotes \(\mathrm{e}^{x}\), and differentiate \(g\) :
```

diff(g)
ans =
exp(x)*\operatorname{cos(x)-exp(x)*sin(x)}

```

To take the second derivative of \(g\), enter
```

diff(g,2)
ans =
-2*exp(x)*sin(x)

```

You can get the same result by taking the derivative twice:
```

diff(diff(g))
ans =
-2*exp(x)*sin(x)

```

In this example, MATLAB automatically simplifies the answer. However, in some cases, MATLAB might not simply an answer, in which case you can use the simplify command. For an example of this, see "More Examples" on page 2-5.

Note that to take the derivative of a constant, you must first define the constant as a symbolic expression. For example, entering
```

 c = sym('5');
 diff(c)
 returns
ans =
O

```

If you just enter
diff(5)
MATLAB returns
ans \(=\)
[]
because 5 is not a symbolic expression.

\section*{Derivatives of Expressions with Several Variables}

To differentiate an expression that contains more than one symbolic variable, you must specify the variable that you want to differentiate with respect to. The diff command then calculates the partial derivative of the expression with respect to that variable. For example, given the symbolic expression
```

syms s t
f = sin(s*t)

```
the command
```

diff(f,t)

```
calculates the partial derivative \(\partial f / \partial t\). The result is
```

ans =
cos(s*t)*s

```

To differentiate \(f\) with respect to the variable s, enter
```

diff(f,s)

```
which returns:
```

ans =
cos(s*t)*t

```

If you do not specify a variable to differentiate with respect to, MATLAB chooses a default variable by the same rule described in "The subs Command" on page 1-9. For one-letter variables, the default variable is the letter closest to \(x\) in the alphabet. In the preceding example, diff( \(f\) ) takes the derivative of \(f\) with respect to \(t\) because \(t\) is closer to \(x\) in the alphabet than \(s\) is. To determine the default variable that MATLAB differentiates with respect to, use the findsym command:
```

findsym(f,1)
ans =
t

```

To calculate the second derivative of \(f\) with respect to \(t\), enter
```

diff(f,t,2)

```
which returns
```

ans =
-sin(s*t)*s^2

```

Note that \(\operatorname{diff}(f, 2)\) returns the same answer because \(t\) is the default variable.

\section*{More Examples}

To further illustrate the diff command, define \(a, b, x, n, t\), and theta in the MATLAB workspace by entering
```

syms a b x n t theta

```

The table below illustrates the results of entering diff(f).
\begin{tabular}{l|l}
\hline \(\mathbf{f}\) & diff(f) \\
\hline\(x^{\wedge} n\) & \(x^{\wedge} n^{*} n / x\) \\
\(\sin \left(a^{*} t+b\right)\) & \(\cos \left(a^{*} t+b\right) * a\) \\
\hline \(\exp (i *\) theta) & \(i^{*} \exp (i *\) theta \()\) \\
\hline
\end{tabular}

In the first example, MATLAB does not automatically simplify the answer. To simplify the answer, enter
```

simplify (diff(x^n))
ans =
$x^{\wedge}(n-1) * n$

```

To differentiate the Bessel function of the first kind, besselj (nu,z), with respect to z , type
```

syms nu z
b = besselj(nu,z);
db = diff(b)

```
which returns
```

db =
-besselj(nu+1,z)+nu/z*besselj(nu,z)

```

The diff function can also take a symbolic matrix as its input. In this case, the differentiation is done element-by-element. Consider the example
```

syms a x
A = [cos(a*x),sin(a*x);-sin(a*x), cos(a*x)]

```
which returns
A =
[ \(\left.\cos \left(a^{*} x\right), \sin \left(a^{*} x\right)\right]\)
[ \(\left.-\sin \left(a^{*} x\right), \cos \left(a^{*} x\right)\right]\)
The command
diff(A)
returns
```

ans =
[- sin(a*x)*a, cos(a*x)*a]
[- cos(a*x)*a, -sin(a*x)*a]

```

You can also perform differentiation of a column vector with respect to a row vector. Consider the transformation from Euclidean \((x, y, z)\) to spherical \((r, \lambda, \varphi)\) coordinates as given by \(x=r \cos \lambda \cos \varphi, y=r \cos \lambda \sin \varphi\), and \(z=r \sin \lambda\). Note that \(\lambda\) corresponds to elevation or latitude while \(\varphi\) denotes azimuth or longitude.


To calculate the Jacobian matrix, \(J\), of this transformation, use the jacobian function. The mathematical notation for \(J\) is
\[
J=\frac{\partial(x, y, x)}{\partial(r, \lambda, \varphi)}
\]

For the purposes of toolbox syntax, use 1 for \(\lambda\) and f for \(\varphi\). The commands
```

syms r l f
x = r*cos(l)*cos(f); y = r*cos(l)*sin(f); z = r*sin(l);
J = jacobian([x; y; z], [r l f])

```
return the Jacobian
```

J =

```

```

[cos(l)*sin(f), -r*sin(l)*sin(f), r*cos(l)*}\operatorname{cos}(f)
[sin(l), r**os(l), 0]

```
and the command
```

detJ = simple(det(J))

```
returns
```

detJ =
-cos(l)*r^2

```

Notice that the first argument of the jacobian function must be a column vector and the second argument a row vector. Moreover, since the determinant of the Jacobian is a rather complicated trigonometric expression, you can use the simple command to make trigonometric substitutions and reductions (simplifications). The section "Simplifications and Substitutions" on page 2-41 discusses simplification in more detail.

A table summarizing diff and jacobian follows.
\begin{tabular}{ll}
\hline Mathematical Operator & MATLAB Command \\
\hline\(\frac{d f}{d x}\) & \(\operatorname{diff}(\mathrm{f}) \operatorname{or} \operatorname{diff}(\mathrm{f}, \mathrm{x})\) \\
\(\frac{d f}{d a}\) & \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Mathematical Operator & MATLAB Command \\
\hline\(\frac{d^{2} f}{d b^{2}}\) & \(\operatorname{diff}(\mathrm{f}, \mathrm{b}, 2)\) \\
\(J=\frac{\partial(r, t)}{\partial(u, v)}\) & \(J=j \operatorname{jacobian}([\mathrm{r} ; \mathrm{t}],[\mathrm{u}, \mathrm{v}])\)
\end{tabular}

\section*{Limits}

The fundamental idea in calculus is to make calculations on functions as a variable "gets close to" or approaches a certain value. Recall that the definition of the derivative is given by a limit
\[
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
\]
provided this limit exists. The Symbolic Math Toolbox enables you to calculate the limits of functions directly. The commands
```

syms h n x
limit((cos(x+h) - cos(x))/h,h,0)

```
which return
```

ans =
-sin(x)

```
and
limit( (1 + x/n)^n,n,inf )
which returns
```

ans =

```
\(\exp (x)\)
illustrate two of the most important limits in mathematics: the derivative (in this case of \(\cos x\) ) and the exponential function.

\section*{One-Sided Limits}

You can also calculate one-sided limits with the Symbolic Math Toolbox. For example, you can calculate the limit of \(x /|x|\), whose graph is shown in the following figure, as \(x\) approaches 0 from the left or from the right.


To calculate the limit as x approaches 0 from the left,
\[
\lim _{x \rightarrow 0^{-}} \frac{x}{|x|}
\]
enter
limit(x/abs(x), x, 0,'left')
This returns
```

ans =

```
    -1

To calculate the limit as x approaches 0 from the right,
\[
\lim _{x \rightarrow 0^{+}} \frac{x}{|x|}=1
\]
enter
limit(x/abs(x),x,0,'right')

This returns
```

ans =
1

```

Since the limit from the left does not equal the limit from the right, the twosided limit does not exist. In the case of undefined limits, MATLAB returns NaN (not a number). For example,
limit(x/abs(x), \(x, 0\) )
returns
ans \(=\)
NaN
Observe that the default case, \(\operatorname{limit}(f)\) is the same as \(\operatorname{limit}(f, x, 0)\). Explore the options for the limit command in this table, where \(f\) is a function of the symbolic object \(x\).
\begin{tabular}{ll}
\hline Mathematical Operation & MATLAB Command \\
\hline \(\lim _{x \rightarrow 0} f(x)\) & \(\operatorname{limit}(\mathrm{f})\) \\
\hline \(\lim _{x \rightarrow a} f(x)\) & \(\operatorname{limit}(\mathrm{f}, \mathrm{x}, \mathrm{a})\) or \\
\(\operatorname{limit}(\mathrm{f}, \mathrm{a})\)
\end{tabular}, \begin{tabular}{l}
\(\operatorname{limit}\left(\mathrm{f}, \mathrm{x}, \mathrm{a}, \mathrm{'l}^{\prime} \mathrm{left}\right)\) \\
\(\lim _{x \rightarrow a-} f(x)\) \\
\(\lim _{x \rightarrow a+} f(x)\) \\
\\
\hline
\end{tabular}

\section*{Integration}

If f is a symbolic expression, then
int \((f)\)
attempts to find another symbolic expression, \(F\), so that \(\operatorname{diff}(F)=f\). That is, int \((f)\) returns the indefinite integral or antiderivative of \(f\) (provided one exists in closed form). Similar to differentiation,
```

int(f,v)

```
uses the symbolic object \(v\) as the variable of integration, rather than the variable determined by findsym. See how int works by looking at this table.

\section*{Mathematical Operation MATLAB Command}
\[
\begin{array}{ll}
\int x^{n} d x=\frac{x^{n+1}}{n+1} & \begin{array}{l}
\operatorname{int}\left(x^{\wedge} \mathrm{n}\right) \text { or } \\
\operatorname{int}\left(x^{\wedge} n, x\right)
\end{array} \\
\int_{0}^{\pi / 2} \sin (2 x) d x=1 & \begin{array}{l}
\operatorname{int}\left(\sin \left(2^{*} \mathrm{x}\right), 0, \mathrm{pi} / 2\right) \\
\operatorname{int}\left(\sin \left(2^{*} \mathrm{x}\right), \mathrm{x}, 0, \mathrm{pi} /\right.
\end{array} \\
g=\cos (a t+b) & \begin{array}{l}
\mathrm{g}=\cos \left(\mathrm{a}^{\star} \mathrm{t}+\mathrm{b}\right) \\
\operatorname{int}(\mathrm{g}) \text { or } \\
\operatorname{int}(\mathrm{g}, \mathrm{t})
\end{array} \\
\int g(t) d t=\sin (a t+b) / a & \begin{array}{l}
\operatorname{int}(\operatorname{besselj}(1, \mathrm{z})) \text { or } \\
\operatorname{int}(\text { besselj }(1, \mathrm{z}), \mathrm{z})
\end{array}
\end{array}
\]

In contrast to differentiation, symbolic integration is a more complicated task. A number of difficulties can arise in computing the integral:
- The antiderivative, F, may not exist in closed form.
- The antiderivative may define an unfamiliar function.
- The antiderivative may exist, but the software can't find the it.
- The software could find the antiderivative on a larger computer, but runs out of time or memory on the available machine.

Nevertheless, in many cases, MATLAB can perform symbolic integration successfully. For example, create the symbolic variables
syms \(a b\) theta \(x\) y \(n u z\)
The following table illustrates integration of expressions containing those variables.
\begin{tabular}{l|l}
\hline \(\mathbf{f}\) & \(\mathbf{i n f}(\mathbf{f})\) \\
\hline\(x^{\wedge} n\) & \(x^{\wedge}(n+1) /(n+1)\) \\
\hline\(y^{\wedge}(-1)\) & \(\log (y)\) \\
\hline\(n^{\wedge} x\) & \(1 / \log (n) * n^{\wedge} x\) \\
\hline \(\sin \left(a^{*}\right.\) theta+b) & \(-1 / a^{*} \cos \left(a^{*} \operatorname{theta+b}\right)\) \\
\hline \(1 /\left(1+u^{\wedge} 2\right)\) & \(\operatorname{atan}(u)\) \\
\hline \(\exp \left(-x^{\wedge} 2\right)\) & \(1 / 2^{*} \operatorname{pi}^{\wedge}(1 / 2) * \operatorname{erf}(x)\) \\
\hline
\end{tabular}

In the last example, \(\exp \left(-x^{\wedge} 2\right)\), there is no formula for the integral involving standard calculus expressions, such as trigonometric and exponential functions. In this case, MATLAB returns an answer in terms of the error function erf.

If MATLAB is unable to find an answer to the integral of a function \(f\), it just returns int(f).
Definite integration is also possible. The commands
```

int(f,a,b)

```
```

 int(f,v,a,b)
    ```
```

 int(f,v,a,b)
    ```
and
are used to find a symbolic expression for
\[
\int_{a}^{b} f(x) d x \text { and } \int_{a}^{b} f(v) d v
\]
respectively.

Here are some additional examples.
\begin{tabular}{l|l|l}
\hline \(\mathbf{f}\) & \(\mathbf{a}, \mathbf{b}\) & \(\inf (\mathbf{f}, \mathbf{a}, \mathbf{b})\) \\
\hline\(x^{\wedge} 7\) & 0,1 & \(1 / 8\) \\
\hline \(1 / x\) & 1,2 & \(\log (2)\) \\
\hline \(\log (x)^{*} \operatorname{sqrt}(x)\) & 0,1 & \(-4 / 9\) \\
\hline \(\exp \left(-x^{\wedge} 2\right)\) & 0, inf & \(1 / 2^{*} \mathrm{pi}^{\wedge}(1 / 2)\) \\
\hline \(\operatorname{besselj}(1, z)^{\wedge} 2\) & 0,1 & \begin{tabular}{l}
\(1 / 12 * \operatorname{hpergeom}([3 / 2,3 / 2]\), \\
\([2,5 / 2,3],-1)\)
\end{tabular} \\
\hline
\end{tabular}

For the Bessel function (besselj) example, it is possible to compute a numerical approximation to the value of the integral, using the double function. The commands
```

syms z
a = int(besselj(1,z)^2,0,1)

```
return
a \(=\)
1/12*hypergeom([3/2, 3/2],[2, 5/2, 3],-1)
and the command
a = double(a)
returns
\(\mathrm{a}=\)
0.0717

\section*{Integration with Real Parameters}

One of the subtleties involved in symbolic integration is the "value" of various parameters. For example, if \(a\) is any positive real number, the expression
\[
e^{-a x^{2}}
\]
is the positive, bell shaped curve that tends to 0 as \(x\) tends to \(\pm \infty\). You can create an example of this curve, for \(a=1 / 2\), using the following commands:
```

syms x
a = sym(1/2);
f = exp(-a*x^2);
ezplot(f)

```
\(\exp \left(-1 / 2 x^{2}\right)\)


However, if you try to calculate the integral
\[
\int_{-\infty}^{\infty} e^{-a x^{2}} d x
\]
without assigning a value to \(a\), MATLAB assumes that \(a\) represents a complex number, and therefore returns a complex answer. If you are only interested in
the case when \(a\) is a positive real number, you can calculate the integral as follows:
```

syms a positive;

```

The argument positive in the syms command restricts a to have positive values. Now you can calculate the preceding integral using the commands
```

syms x;
f = exp(-a*x^2);
int(f,x,-inf,inf)

```

This returns
ans \(=\)
\(1 /(a)^{\wedge}(1 / 2) * \mathrm{pi}^{\wedge}(1 / 2)\)
If you want to calculate the integral
\[
\int e^{-a x^{2}} d x
\]
for any real number a, not necessarily positive, you can declare a to be real with the following commands:
```

syms a real
f=exp(-a*x^2);
F = int(f, x, -inf, inf)

```

MATLAB returns
```

F =
PIECEWISE([1/a^(1/2)*pi^(1/2), signum(a) = 1],[Inf, otherwise])

```

You can put this in a more readable form by entering
pretty (F)
```

\{ 1/2
\{ pi

```


The \(\sim\) after a is simply a reminder that a is real, and signum (a~) is the sign of a. So the integral is
\[
\frac{\sqrt{\pi}}{\sqrt{a}}
\]
when a is positive, just as in the preceding example, and \(\infty\) when a is negative.
You can also declare a sequence of symbolic variables \(w, y, x, z\) to be real by entering
```

syms w x y z real

```

\section*{Integration with Complex Parameters}

To calculate the integral
\[
\int_{-\infty}^{\infty} e^{-a x^{2}} d x
\]
for complex values of a, enter
syms a x unreal \%
\(f=\exp \left(-a^{*} x^{\wedge} 2\right) ;\)
F = int(f, \(x,-i n f, i n f)\)
Note that syms is used with the unreal option to clear the real property that was assigned to a in the preceding example - see "Clearing Variables in the Maple Workspace" on page 1-13.

The preceding commands produce the complex output
```

F =
PIECEWISE([1/a^(1/2)*pi^(1/2), csgn(a) = 1],[Inf, otherwise])

```

You can make this output more readable by entering
pretty (F)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{1/2} \\
\hline pi & \\
\hline ---- & \(\operatorname{csgn}(\mathrm{a})=1\) \\
\hline \multicolumn{2}{|l|}{1/2} \\
\hline \multicolumn{2}{|l|}{\{ a} \\
\hline Inf & otherwise \\
\hline
\end{tabular}

The expression csgn (a) (complex sign of a) is defined by
\[
\operatorname{csgn}(a)=\left\{\begin{array}{cc}
1 & \text { if } \operatorname{Re}(a)>0, \text { or } \operatorname{Re}(a)=0 \text { and } \operatorname{Im}(a)>0 \\
-1 & \text { if } \operatorname{Re}(a)<0, \text { or } \operatorname{Re}(a)=0 \text { and } \operatorname{Im}(a)<0
\end{array}\right.
\]

The condition \(\operatorname{csgn}(a)=1\) corresponds to the shaded region of the complex plane shown in the following figure.


Region corresponding to \(\operatorname{csgn}(\mathrm{a})=1\)

The square root of a in the answer is the unique square root lying in the shaded region.

\section*{Symbolic Summation}

You can compute symbolic summations, when they exist, by using the symsum command. For example, the p-series
\[
1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots
\]
sums to \(\pi^{2} / 6\), while the geometric series
\[
1+x+x^{2}+\ldots
\]
sums to \(1 /(1-x)\), provided \(|x|<1\). Three summations are demonstrated below:
```

syms x k
s1 = symsum(1/k^2,1,inf)
s2 = symsum(x^k,k,0,inf)
s1 =
1/6*pi^2
s2 =
-1/(x-1)

```

\section*{Taylor Series}

The statements
```

 syms x
 f = 1/(5+4*}\operatorname{cos}(x)
 T = taylor(f,8)
    ```
return
T =
\(1 / 9+2 / 81 * x^{\wedge} 2+5 / 1458 * x^{\wedge} 4+49 / 131220 * x^{\wedge} 6\)
which is all the terms up to, but not including, order eight in the Taylor series for \(f(x)\) :
\[
\sum_{n=0}^{\infty}(x-a)^{n f^{(n)}(a)} \frac{n!}{}
\]

Technically, T is a Maclaurin series, since its basepoint is a \(=0\).
The command
pretty ( T )
prints \(T\) in a format resembling typeset mathematics:
\(1 / 9+2 / 81 x^{2}+5 / 1458 x^{4}+\underset{131220}{49} x^{6}\)

These commands
syms \(x\)
\(\mathrm{g}=\exp \left(\mathrm{x}^{*} \sin (\mathrm{x})\right)\)
\(\mathrm{t}=\) taylor( \(\mathrm{g}, 12,2\) );
generate the first 12 nonzero terms of the Taylor series for \(g\) about \(x=2\).
Next, plot these functions together to see how well this Taylor approximation compares to the actual function g :
```

xd = 1:0.05:3; yd = subs(g,x,xd);
ezplot(t, [1,3]); hold on;
plot(xd, yd, 'r-.')
title('Taylor approximation vs. actual function');
legend('Taylor','Function')

```


Special thanks to Professor Gunnar Bäckstrøm of UMEA in Sweden for this example.

\section*{Calculus Example}

This section describes how to analyze a simple function to find its asymptotes, maximum, minimum, and inflection point. The section covers the following topics:
- "Defining the Function" on page 2-21
- "Finding the Asymptotes" on page 2-22
- "Finding the Maximum and Minimum" on page 2-24
- "Finding the Inflection Point" on page 2-26

\section*{Defining the Function}

The function in this example is
\[
f(x)=\frac{3 x^{2}+6 x-1}{x^{2}+x-3}
\]

To create the function, enter the following commands:
syms x
num \(=3 * x^{\wedge} 2+6 * x-1\);
denom = x^2 + x - 3;
\(f\) = num/denom
This returns
\[
f=
\]
\(\left(3 * x^{\wedge} 2+6 * x-1\right) /\left(x^{\wedge} 2+x-3\right)\)
You can plot the graph of \(f\) by entering ezplot(f)

This displays the following plot.


\section*{Finding the Asymptotes}

To find the horizontal asymptote of the graph of \(f\), take the limit of \(f\) as \(x\) approaches positive infinity:
```

limit(f, inf)
ans =
3

```

The limit as \(x\) approaches negative infinity is also 3 . This tells you that the line \(y=3\) is a horizontal asymptote to the graph.
To find the vertical asymptotes of \(f\), set the denominator equal to 0 and solve by entering the following command:
```

roots = solve(denom)

```

This returns to solutions to \(x^{2}+x-3=0\) :
```

roots =
[-1/2+1/2*13^(1/2)]
[-1/2-1/2*13^(1/2)]

```

This tells you that vertical asymptotes are the lines
\[
x=\frac{-1+\sqrt{13}}{2}
\]
and
\[
x=\frac{-1-\sqrt{13}}{2}
\]

You can plot the horizontal and vertical asymptotes with the following commands:
```

ezplot(f)
hold on % Keep the graph of f in the figure
% Plot horizontal asymptote
plot([-2*pi 2*pi], [3 3],'g')
% Plot vertical asymptotes
plot(double(roots(1))*[1 1], [-5 10],'r')
plot(double(roots(2))*[1 1], [-5 10],'r')
title('Horizontal and Vertical Asymptotes')
hold off

```

Note that roots must be converted to double to use the plot command.

The preceding commands display the following figure.


To recover the graph of f without the asymptotes, enter ezplot(f)

\section*{Finding the Maximum and Minimum}

You can see from the graph that f has a local maximum somewhere between the points \(x=2\) and \(x=3\), and might have a local minimum between \(x=-4\) and \(x=-2\). To find the \(x\)-coordinates of the maximum and minimum, first take the derivative of \(f\) :
\(f 1=\operatorname{diff}(f)\)
This returns
\[
f 1=\left(6^{*} x+6\right) /\left(x^{\wedge} 2+x-3\right)-\left(3^{*} x^{\wedge} 2+6^{*} x-1\right) /\left(x^{\wedge} 2+x-3\right)^{\wedge} 2^{\star}\left(2^{*} x+1\right)
\]

To simplify this expression, enter
f1 = simplify(f1)
which returns
```

f1 = - (3* (^^2+16*x+17)/((x^2+x-3)^2

```

You can display f1 in a more readable form by entering
    pretty(f1)
which returns
\(3 x^{2}+16 x+17\)
\(\left.--------{ }^{2}{ }^{2}+x-3\right)^{2}\)

Next, set the derivative equal to 0 and solve for the critical points:
```

crit_pts = solve(f1)

```

This returns
ans \(=\)
[ -8/3-1/3*13^(1/2)]
[ \(\left.-8 / 3+1 / 3^{*} 13^{\wedge}(1 / 2)\right]\)
It is clear from the graph of \(f\) that it has a local minimum at
\[
x_{1}=\frac{-8-\sqrt{13}}{3}
\]
and a local maximum at
\[
x_{2}=\frac{-8+\sqrt{13}}{3}
\]

Note MATLAB does not always return the roots to an equation in the same order.

You can plot the maximum and minimum of \(f\) with the following commands:
```

ezplot(f)
hold on

```
```

plot(double(crit_pts), double(subs(f,crit_pts)),'ro')
title('Maximum and Minimum of f')
text(-5.5,3.2,'Local minimum')
text(-2.5,2,'Local maximum')
hold off

```

This displays the following figure.


\section*{Finding the Inflection Point}

To find the inflection point of \(f\), set the second derivative equal to 0 and solve.
```

f2 = diff(f1);
inflec_pt = solve(f2);
double(inflec_pt)

```

This returns
```

ans =
-5.2635
-1.3682 - 0.8511i
-1.3682 + 0.8511i

```

In this example, only the first entry is a real number, so this is the only inflection point. (Note that in other examples, the real solutions might not be the first entries of the answer.) Since you are only interested in the real solutions, you can discard the last two entries, which are complex numbers.
```

inflec_pt = inflec_pt(1)

```

To see the symbolic expression for the inflection point, enter pretty (simplify(inflec_pt))

This returns
```

 1/2 2/3 1/2 1/3
 (676 + 156 13) + 52 + 16 (676 + 156 13)
 - 1/6 ---
1/2 1/3
(676 + 156 13)

```

To plot the inflection point, enter
```

ezplot(f, [-9 6])
hold on
plot(double(inflec_pt), double(subs(f,inflec_pt)),'ro')
title('Inflection Point of f')
text(-7,2,'Inflection point')
hold off

```

The extra argument, [-96], in ezplot extends the range of \(x\) values in the plot so that you see the inflection point more clearly, as shown in the following figure.

Inflection Point of \(f\)


\section*{Extended Calculus Example}

This section presents an extended example that illustrates how to find the maxima and minima of a function. The section covers the following topics:
- "Defining the Function" on page 2-28
- "Finding the Zeros of f3" on page 2-30
- "Finding the Maxima and Minima of f2" on page 2-33
- "Integrating" on page 2-35

\section*{Defining the Function}

The starting point for the example is the function
\[
f(x)=\frac{1}{5+4 \cos (x)}
\]

You can create the function with the commands
```

syms x
f = 1/(5+4* cos(x))

```
which return
\(f=\)
\(1 /(5+4 * \cos (x))\)
The example shows how to find the maximum and minimum of the second derivative of \(f(x)\). To compute the second derivative, enter
\[
\text { f2 }=\operatorname{diff}(f, 2)
\]
which returns
```

f2 =
32/(5+4*}\operatorname{cos}(x)\mp@subsup{)}{}{\wedge}\mp@subsup{3}{}{*}\operatorname{sin}(x)^2+4/(5+4*\operatorname{cos}(x)\mp@subsup{)}{}{\wedge}\mp@subsup{2}{}{*}\operatorname{cos}(x

```

Equivalently, you can type \(f 2=\operatorname{diff}(f, x, 2)\). The default scaling in ezplot cuts off part of the graph of \(f 2\). You can set the axes limits manually to see the entire function:
```

ezplot(f2)
axis([-2*pi 2*pi -5 2])
title('Graph of f2')

```


From the graph, it appears that the maximum value of \(f^{\prime \prime}(x)\) is 1 and the minimum value is -4 . As you will see, this is not quite true. To find the exact values of the maximum and minimum, you only need to find the maximum and minimum on the interval \((-\pi \pi]\). This is true because \(f^{\prime \prime}(x)\) is periodic with period \(2 \pi\), so that the maxima and minima are simply repeated in each translation of this interval by an integer multiple of \(2 \pi\). The next two sections explain how to do find the maxima and minima.

\section*{Finding the Zeros of \(f 3\)}

The maxima and minima of \(f^{\prime \prime}(x)\) occur at the zeros of \(f^{\prime \prime \prime}(x)\). The statements
```

 f3 = diff(f2);
 pretty(f3)
    ```
compute \(f^{\prime \prime \prime}(x)\) and display it in a more readable form:


You can simplify this expression using the statements
```

f3 = simple(f3);
pretty(f3)

```
```

 2 2
 sin(x) (96 sin(x) + 80 cos(x) + 80 cos(x) - 25)
 4
4
(5 + 4 cos(x))

```

Now, to find the zeros of \(f^{\prime \prime \prime}(x)\), enter
```

zeros = solve(f3)

```

This returns a 5 -by- 1 symbolic matrix
```

zeros =

```
[ 0]
[ \(\quad \operatorname{atan}\left(\left(-255-60 * 19^{\wedge}(1 / 2)\right)^{\wedge}(1 / 2), 10+3^{\left.\left.* 19^{\wedge}(1 / 2)\right)\right]}\right.\)
[ \(\left.\quad \operatorname{atan}\left(-\left(-255-60^{* 1} 19^{\wedge}(1 / 2)\right)^{\wedge}(1 / 2), 10+3^{*} 19^{\wedge}(1 / 2)\right)\right]\)
\(\left[\quad \operatorname{atan}\left(\left(-255+60^{*} 19^{\wedge}(1 / 2)\right)^{\wedge}(1 / 2) /\left(10-3^{*} 19^{\wedge}(1 / 2)\right)\right)+\right.\) pi]
[ - \(\left.-\operatorname{atan}\left(\left(-255+60^{*} 19^{\wedge}(1 / 2)\right)^{\wedge}(1 / 2) /\left(10-3^{*} 19^{\wedge}(1 / 2)\right)\right)-\mathrm{pi}\right]\)
each of whose entries is a zero of \(f^{\prime \prime \prime}(x)\). The commands
format; \% Default format of 5 digits
zerosd = double(zeros)
convert the zeros to double form:
```

zerosd =
0
0+ 2.4381i
0-2.4381i
2.4483
-2.4483

```

So far, you have found three real zeros and two complex zeros. However, as the following graph of f 3 shows, these are not all its zeros:
```

ezplot(f3)
hold on;
plot(zerosd,0*zerosd,'ro') % Plot zeros
plot([-2*pi,2*pi], [0,0],'g-.'); % Plot x-axis
title('Graph of f3')

```

Graph of f 3


The red circles in the graph correspond to zerosd(1), zerosd(4), and zerosd (5). As you can see in the graph, there are also zeros at \(\pm \pi\). The additional zeros occur because \(f^{\prime \prime \prime}(x)\) contains a factor of \(\sin (x)\), which is zero at integer multiples of \(\pi\). The function, solve \((\sin (x))\), however, only finds the zero at \(x=0\).

A complete list of the zeros of \(f^{\prime \prime \prime}(x)\) in the interval \((-\pi \pi]\) is
```

zerosd = [zerosd(1) zerosd(4) zerosd(5) pi];

```

You can display these zeros on the graph of \(f^{\prime \prime \prime}(x)\) with the following commands:
```

ezplot(f3)
hold on;
plot(zerosd,0*zerosd,'ro')
plot([-2*pi,2*pi], [0,0],'g-.'); % Plot x-axis
title('Zeros of f3')
hold off;

```

Zeros of f3


\section*{Finding the Maxima and Minima of \(\mathbf{f} 2\)}

To find the maxima and minima of \(f^{\prime \prime}(x)\), calculate the value of \(f^{\prime \prime}(x)\) at each of the zeros of \(f^{\prime \prime \prime}(x)\). To do so, substitute zeros into f2 and display the result below zeros:
```

[zerosd; subs(f2,zerosd)]
ans =

0	2.4483	-2.4483	3.1416
0.0494	1.0051	1.0051	-4.0000

```

This shows the following:
- \(f^{\prime \prime}(x)\) has an absolute maximum at \(x= \pm 2.4483\), whose value is 1.0051 .
- \(f^{\prime \prime}(x)\) has an absolute minimum at \(x=\pi\), whose value is -4 .
- \(f^{\prime \prime}(x)\) has a local minimum at \(x=\pi\), whose value is 0.0494 .

You can display the maxima and minima with the following commands:
```

clf
ezplot(f2)
axis([-2*pi 2*pi -4.5 1.5])
ylabel('f2');
title('Maxima and Minima of f2')
hold on
plot(zeros, subs(f2,zeros), 'ro')
text(-4, 1.25, 'Absolute maximum')
text(-1,-0.25,'Local minimum')
text(.9, 1.25, 'Absolute maximum')
text(1.6, -4.25, 'Absolute minimum')
hold off;

```

This displays the following figure.


The preceding analysis shows that the actual range of \(f^{\prime \prime}(x)\) is \([-4,1.0051]\).

\section*{Integrating}

To see whether integrating \(f^{\prime \prime}(x)\) twice with respect to \(x\) recovers the original function \(f(x)=1 /(5+4 \cos x)\), enter the command
```

g = int(int(f2))

```
which returns
```

g =
-8/(tan(1/2*x)^2+9)

```

This is certainly not the original expression for \(f(x)\). Now look at the difference \(f(x)-g(x)\).
\(d=f-g\)
pretty(d)
```

1
8

```
```

5+4\operatorname{cos(x) 2}

```
5+4\operatorname{cos(x) 2}
    tan(1/2 x) + 9
```

 tan(1/2 x) + 9
    ```

You can simplify this using simple(d) or simplify(d). Either command produces
```

ans =

```
1

This illustrates the concept that differentiating \(f(x)\) twice, then integrating the result twice, produces a function that may differ from \(f(x)\) by a linear function of \(x\).

Finally, integrate \(f(x)\) once more:
\[
F=\operatorname{int}(f)
\]

The result
\(\mathrm{F}=\)
2/3*atan(1/3*tan(1/2*x))
involves the arctangent function.
Note that \(F(x)\) is not an antiderivative of \(f(x)\) for all real numbers, since it is discontinuous at odd multiples of \(\pi\), where \(\tan x\) is singular. You can see the gaps in \(F(x)\) in the following figure.


To change \(F(x)\) into a true antiderivative of \(f(x)\) that is differentiable everywhere, you can add a step function to \(F(x)\). The height of the steps is the height of the gaps in the graph of \(F(x)\). You can determine the height of the gaps by taking the limits of \(F(x)\) as \(x\) approaches \(\pi\) from the left and from the right. The limit from the left is
```

limit(F, x, pi, 'left')
ans =
1/3*pi

```

On the other hand, the limit from the right is
```

limit(F, x, pi, 'right')
ans =-1/3*pi

```

The height of the gap is the distance between the left and right hand limits, which is \(2 \pi / 3\), as shown in the following figure.


You can create the step function using the round function, which rounds numbers to the nearest integer, as follows:
```

J = sym(2*pi/3)*sym('round(x/(2*pi))');

```

Each step has width \(2 \pi\) and the jump from one step to the next is \(2 \pi / 3\), as shown in the following figure.


Next, add the step function \(J(x)\) to \(F(x)\) with the following code:
```

F1 = F+J
F1 =
2/3*atan(1/3*tan(1/2*x))+2/3*pi*round(1/2*x/pi)

```

Adding the step function raises the section of the graph of \(F(x)\) on the interval [ \(\pi 3 \pi\) ) up by \(2 \pi / 3\), lowers the section on the interval \((-3 \pi-\pi]\) down by \(2 \pi / 3\), and so on, as shown in the following figure.


When you plot the result by entering ezplot(F1)
you see that this representation does have a continuous graph.


\section*{Simplifications and Substitutions}

There are several functions that simplify symbolic expressions and are used to perform symbolic substitutions:

\section*{Simplifications}

Here are three different symbolic expressions.
```

syms x
f = x^3-6*x^2+11*x-6
g = (x-1)*(x-2)*(x-3)
h = -6+(11+(-6+x)*x)*x

```

Here are their prettyprinted forms, generated by
```

pretty(f), pretty(g), pretty(h)
3 2
x-6x + 11x-6
(x-1) (x - 2) (x - 3)
-6 + (11 + (-6 + x) x) x

```

These expressions are three different representations of the same mathematical function, a cubic polynomial in \(x\).

Each of the three forms is preferable to the others in different situations. The first form, f , is the most commonly used representation of a polynomial. It is simply a linear combination of the powers of x . The second form, g , is the factored form. It displays the roots of the polynomial and is the most accurate for numerical evaluation near the roots. But, if a polynomial does not have such simple roots, its factored form may not be so convenient. The third form, \(h\), is the Horner, or nested, representation. For numerical evaluation, it involves the fewest arithmetic operations and is the most accurate for some other ranges of x.

The symbolic simplification problem involves the verification that these three expressions represent the same function. It also involves a less clearly defined objective - which of these representations is "the simplest"?

This toolbox provides several functions that apply various algebraic and trigonometric identities to transform one representation of a function into another, possibly simpler, representation. These functions are collect, expand, horner, factor, simplify, and simple.

\section*{collect}

The statement
```

collect(f)

```
views \(f\) as a polynomial in its symbolic variable, say \(x\), and collects all the coefficients with the same power of \(x\). A second argument can specify the variable in which to collect terms if there is more than one candidate. Here are a few examples.
\begin{tabular}{ll}
\hline \(\mathbf{f}\) & collect(f) \\
\hline\((x-1)^{*}(x-2)^{*}(x-3)\) & \(x^{\wedge} 3-6^{*} x^{\wedge} 2+11^{*} x-6\) \\
\hline\(x^{*}\left(x^{*}(x-6)+11\right)-6\) & \(x^{\wedge} 3-6^{*} x^{\wedge} 2+11^{*} x-6\) \\
\hline\((1+x) * t+x^{*} t\) & \(2 * x^{*} t+t\) \\
\hline
\end{tabular}

\section*{expand}

The statement
```

expand(f)

```
distributes products over sums and applies other identities involving functions of sums as shown in the examples below.
\begin{tabular}{l|l}
\hline \(\mathbf{f}\) & expand(f) \\
\hline\(a *(x+y)\) & \(a * x+a * y\) \\
\((x-1) *(x-2) *(x-3)\) & \(x^{\wedge} 3-6 * x^{\wedge} 2+11 * x-6\) \\
\(x *(x *(x-6)+11)-6\) & \(x^{\wedge} 3-6 * x^{\wedge} 2+11 * x-6\) \\
\hline \(\exp (a+b)\) & \(\exp (a) * \exp (b)\) \\
\hline \(\cos (x+y)\) & \(\cos (x) * \cos (y)-\sin (x) * \sin (y)\) \\
\hline \(\cos (3 * \operatorname{acos}(x))\) & \(4 * x^{\wedge} 3-3 * x\) \\
\hline
\end{tabular}

\section*{horner}

\section*{The statement}
```

horner(f)

```
transforms a symbolic polynomial f into its Horner, or nested, representation as shown in the following examples.
\begin{tabular}{ll}
\hline \(\mathbf{f}\) & horner(f) \\
\hline\(x^{\wedge} 3-6 * x^{\wedge} 2+11 * x-6\) & \(-6+(11+(-6+x) * x) * x\) \\
\hline \(1.1+2.2 * x+3.3 * x^{\wedge} 2\) & \(11 / 10+(11 / 5+33 / 10 * x) * x\) \\
\hline
\end{tabular}

\section*{factor}

If \(f\) is a polynomial with rational coefficients, the statement
factor(f)
expresses \(f\) as a product of polynomials of lower degree with rational coefficients. If \(f\) cannot be factored over the rational numbers, the result is \(f\) itself. Here are several examples.
\begin{tabular}{l|l}
\hline \(\mathbf{f}\) & \(\mathbf{f a c t o r}(\mathbf{f})\) \\
\hline\(x^{\wedge} 3-6 * x^{\wedge} 2+11 * x-6\) & \((x-1) *(x-2) *(x-3)\) \\
\hline\(x^{\wedge} 3-6 * x^{\wedge} 2+11 * x-5\) & \(x^{\wedge} 3-6 * x^{\wedge} 2+11 * x-5\) \\
\hline\(x^{\wedge} 6+1\) & \(\left(x^{\wedge} 2+1\right) *\left(x^{\wedge} 4-x^{\wedge} 2+1\right)\) \\
\hline
\end{tabular}

Here is another example involving factor. It factors polynomials of the form \(x^{\wedge} n+1\). This code
syms x ;
\(\mathrm{n}=(1: 9)^{\prime}\);
\(\mathrm{p}=\mathrm{x} . \wedge \mathrm{n}+1\);
f = factor \((\mathrm{p})\);
[p, f]
returns a matrix with the polynomials in its first column and their factored forms in its second.
\begin{tabular}{|c|c|c|}
\hline [ & \(\mathrm{x}+1\), & \(\mathrm{x}+1\) \\
\hline [ & \(\mathrm{x}^{\wedge} 2+1\), & \(\mathrm{x}^{\wedge} 2+1\) \\
\hline [ & \(\mathrm{x}^{\wedge} 3+1\), & \((x+1) *\left(x^{\wedge} 2-x+1\right)\) \\
\hline [ & \(\mathrm{x}^{\wedge} 4+1\), & \(\mathrm{x}^{\wedge} 4+1\) \\
\hline [ & \(\mathrm{x}^{\wedge} 5+1\), & \((x+1) *\left(x^{\wedge} 4-x^{\wedge} 3+x^{\wedge} 2-x+1\right)\) \\
\hline [ & \(\mathrm{x}^{\wedge} 6+1\), & \(\left(x^{\wedge} 2+1\right)^{\star}\left(x^{\wedge} 4-x^{\wedge} 2+1\right)\) \\
\hline [ & \(\mathrm{x}^{\wedge} 7+1\), & \((x+1) *\left(1-x+x^{\wedge} 2-x^{\wedge} 3+x^{\wedge} 4-x^{\wedge} 5+x^{\wedge} 6\right)\) \\
\hline [ & \(\mathrm{x}^{\wedge} 8+1\), & \(x^{\wedge} 8+1\) \\
\hline [ & \(x^{\wedge} 9+1\), & \((x+1) *\left(x^{\wedge} 2-x+1\right) *\left(x^{\wedge} 6-x^{\wedge} 3+1\right)\) \\
\hline
\end{tabular}

As an aside at this point, factor can also factor symbolic objects containing integers. This is an alternative to using the factor function in the MATLAB specfun directory. For example, the following code segment
```

N = sym(1);
for k = 2:11
N(k) = 10*N(k-1)+1;
end
[N' factor(N')]

```
displays the factors of symbolic integers consisting of 1 s :
\begin{tabular}{|c|c|c|}
\hline [ & 1 , & 1] \\
\hline [ & 11, & (11)] \\
\hline [ & 111, & (3)* (37)] \\
\hline [ & 1111, & (11)*(101)] \\
\hline [ & 11111, & (41) * (271)] \\
\hline [ & 111111, & \((3) *(7) *(11) *(13) *(37)]\) \\
\hline [ & 1111111, & \((239) *(4649)]\) \\
\hline [ & 11111111, & (11)*(73)*(101)*(137)] \\
\hline [ & 111111111, & (3) ^2* (37) * (333667)] \\
\hline [ & 1111111111, & (11)*(41)*(271)*(9091)] \\
\hline [ & 11111111111, & (513239)*(21649)] \\
\hline
\end{tabular}

\section*{simplify}

The simplify function is a powerful, general purpose tool that applies a number of algebraic identities involving sums, integral powers, square roots and other fractional powers, as well as a number of functional identities involving trig functions, exponential and log functions, Bessel functions, hypergeometric functions, and the gamma function. Here are some examples.
\begin{tabular}{ll}
\hline \(\mathbf{f}\) & simplify(f) \\
\hline\(x *(x *(x-6)+11)-6\) & \(x^{\wedge} 3-6 * x^{\wedge} 2+11 * x-6\) \\
\hline\(\left(1-x^{\wedge} 2\right) /(1-x)\) & \(x+1\) \\
\hline\(\left(1 / a^{\wedge} 3+6 / a^{\wedge} 2+12 / a+8\right)^{\wedge}(1 / 3)\) & \(\left(\left(2^{*} a+1\right)^{\wedge} 3 / a^{\wedge} 3\right)^{\wedge}(1 / 3)\) \\
\hline \begin{tabular}{l} 
syms \(x y\) positive \\
\(\log (x * y)\)
\end{tabular} & \(\log (x)+\log (y)\) \\
\hline \(\exp (x) * \exp (y)\) & \(\exp (x+y)\) \\
\hline \(\operatorname{besselj}(2, x)+\operatorname{besselj}(0, x)\) & \(2 / x^{*} \operatorname{bessel}(1, x)\) \\
\hline \(\operatorname{gamma}(x+1)-x^{\star} \operatorname{gamma}(x)\) & 0 \\
\hline \(\cos (x)^{\wedge} 2+\sin (x)^{\wedge} 2\) & 1 \\
\hline
\end{tabular}

\section*{simple}

The simple function has the unorthodox mathematical goal of finding a simplification of an expression that has the fewest number of characters. Of course, there is little mathematical justification for claiming that one expression is "simpler" than another just because its ASCII representation is shorter, but this often proves satisfactory in practice.

The simple function achieves its goal by independently applying simplify, collect, factor, and other simplification functions to an expression and keeping track of the lengths of the results. The simple function then returns the shortest result.

The simple function has several forms, each returning different output. The form
```

simple(f)

```
displays each trial simplification and the simplification function that produced it in the MATLAB command window. The simple function then returns the shortest result. For example, the command
```

simple(cos(x)^2 + sin(x)^2)

```
displays the following alternative simplifications in the MATLAB command window:
```

simplify:
1
radsimp:
cos(x)^2+sin(x)^^2
combine(trig):
1
factor:
cos(x)^2+\operatorname{sin}(x\mp@subsup{)}{}{\wedge}2
expand:
cos(x)^2+sin(x)^^2
combine:
1
convert(exp):
(1/2* exp(i*x)+1/2/exp(i*x))^2-1/4* (exp(i*x)-1/exp(i*x))^2
convert(sincos):
cos(x)^2+sin(x)^^2
convert(tan):
(1-tan(1/2*x)^2)^2/(1+tan(1/2*x)^2)^2+
4*}\operatorname{tan}(1/2*x\mp@subsup{)}{}{\wedge}2/(1+\operatorname{tan}(1/2*x)^2)^
collect(x):
cos(x)^2+\operatorname{sin}(x\mp@subsup{)}{}{\wedge}2

```
and returns
ans \(=\)
1
This form is useful when you want to check, for example, whether the shortest form is indeed the simplest. If you are not interested in how simple achieves its result, use the form
```

f = simple(f)

```

This form simply returns the shortest expression found. For example, the statement
```

 f = simple(cos(x)^2+sin(x)^2)
    ```
returns
f =
1

If you want to know which simplification returned the shortest result, use the multiple output form:
```

[F, how] = simple(f)

```

This form returns the shortest result in the first variable and the simplification method used to achieve the result in the second variable. For example, the statement
```

[f, how] = simple(cos(x)^2+sin(x)^2)

```
returns
```

f =

```
1
how =
combine

The simple function sometimes improves on the result returned by simplify, one of the simplifications that it tries. For example, when applied to the
examples given for simplify, simple returns a simpler (or at least shorter) result in two cases.
\begin{tabular}{l|l|l}
\hline \(\mathbf{f}\) & simplify \((\mathbf{f})\) & simple(f) \\
\hline \begin{tabular}{ll}
\(\left(1 / a^{\wedge} 3+6 / a^{\wedge} 2+12 / a+8\right)^{\wedge}(1 / 3)\)
\end{tabular} & \(\left(\left(2^{\star} a+1\right)^{\wedge} 3 / a^{\wedge} 3\right)^{\wedge}(1 / 3)\) & \((2 * a+1) / a\) \\
\begin{tabular}{l} 
syms \(x\) y positive \\
\(\log (x * y)\)
\end{tabular} & \(\log (x)+\log (y)\) & \(\log \left(x^{\star} y\right)\) \\
\hline
\end{tabular}

In some cases, it is advantageous to apply simple twice to obtain the effect of two different simplification functions. For example, the statements
```

 f = (1/a^3+6/a^2+12/a+8)^(1/3);
 simple(simple(f))
    ```
return
\[
2+1 / a
\]

The first application, simple(f), uses radsimp to produce (2*a+1)/a; the second application uses combine (trig) to transform this to \(1 / \mathrm{a}+2\).
The simple function is particularly effective on expressions involving trigonometric functions. Here are some examples.
\begin{tabular}{l|l}
\hline \(\mathbf{f}\) & simple \((\mathbf{f})\) \\
\hline \(\cos (x)^{\wedge} 2+\sin (x)^{\wedge} 2\) & 1 \\
\hline \(2 * \cos (x)^{\wedge} 2-\sin (x)^{\wedge} 2\) & \(3 * \cos (x)^{\wedge} 2-1\) \\
\hline \(\cos (x)^{\wedge} 2-\sin (x)^{\wedge} 2\) & \(\cos (2 * x)\) \\
\hline \(\cos (x)+\left(-\sin (x)^{\wedge} 2\right)^{\wedge}(1 / 2)\) & \(\cos (x)+i * \sin (x)\) \\
\hline \(\cos (x)+i * \sin (x)\) & \(\exp (i * x)\) \\
\hline \(\cos (3 * \cos (x))\) & \(4 * x^{\wedge} 3-3 * x\) \\
\hline
\end{tabular}

\section*{Substitutions}

There are two functions for symbolic substitution: subexpr and subs.

\section*{subexpr}

These commands
```

syms a x
s = solve((^^ 3+a* x+1)

```
solve the equation \(x^{\wedge} 3+a * x+1=0\) for \(x\) :
s =
[ 1/6* \(\left(-108+12^{*}\left(12^{*} a^{\wedge} 3+81\right)^{\wedge}(1 / 2)\right)^{\wedge}(1 / 3)-2^{*} a /\)
\(\left.\left(-108+12^{*}\left(12^{*} a^{\wedge} 3+81\right)^{\wedge}(1 / 2)\right)^{\wedge}(1 / 3)\right]\)
[ \(-1 / 12^{*}\left(-108+12^{*}\left(12^{*} a^{\wedge} 3+81\right)^{\wedge}(1 / 2)\right)^{\wedge}(1 / 3)+a /\)
\(\left(-108+12^{*}\left(12^{*} a^{\wedge} 3+81\right)^{\wedge}(1 / 2)\right)^{\wedge}(1 / 3)+1 / 2 * i * 3^{\wedge}(1 / 2) *(1 /\) 6* (-108+12* (12*a^3+81) ^(1/2) ) ^(1/3)+2*a/
(-108+12* (12*a^3+81) ^(1/2) )^(1/3) )]
[ - 1/12* \(\left(-108+12 *\left(12^{*} a^{\wedge} 3+81\right)^{\wedge}(1 / 2)\right)^{\wedge}(1 / 3)+a /\)
(-108+12* (12*a^3+81) ^(1/2) )^(1/3)-1/2*i*3^(1/2)*(1/
6* \(\left(-108+12^{*}\left(12^{*} a^{\wedge} 3+81\right)^{\wedge}(1 / 2)\right)^{\wedge}(1 / 3)+2^{*} a /\)
\(\left.\left.\left(-108+12^{*}\left(12^{*} a^{\wedge} 3+81\right)^{\wedge}(1 / 2)\right)^{\wedge}(1 / 3)\right)\right]\)

Use the pretty function to display s in a more readable form:
```

pretty(s)
$\mathrm{s}=$

```


The pretty command inherits the \%n ( \(n\), an integer) notation from Maple to denote subexpressions that occur multiple times in the symbolic object. The subexpr function allows you to save these common subexpressions as well as the symbolic object rewritten in terms of the subexpressions. The subexpressions are saved in a column vector called sigma.

Continuing with the example
```

r = subexpr(s)

```
returns
```

sigma =
-108+12*(12*a^3+81)^(1/2)
r =
[1/6*sigma^(1/3)-2*a/sigma^(1/3)]
[-1/12*sigma^(1/3)+a/sigma^(1/3)+1/2*i*3^(1/2)*(1/6*sigma^
(1/3)+2*a/sigma^(1/3))]

```
```

[-1/12*sigma^(1/3)+a/sigma^(1/3)-1/2*i*3^(1/2)*(1/6*sigma^
(1/3)+2*a/sigma^(1/3))]

```

Notice that subexpr creates the variable sigma in the MATLAB workspace. You can verify this by typing whos, or the command
```

sigma

```
which returns
```

sigma =
-108+12*(12*a^3+81)^(1/2)

```

\section*{subs}

The following code finds the eigenvalues and eigenvectors of a circulant matrix A:
```

syms a b c
A = [a b c; b c a; c a b];
[v,E] = eig(A)
v =
[-(a+(b^2-b*a-c*b-c*a+a^2+c^2)^(1/2)-b)/(a-c),
-(a-(b^2-b*a-c*b-c*a+a^2+c^2)^(1/2)-b)/(a-c), 1]
[-(b-c-(b^2-b*a-c*b-c*a+a^2+c^2)^(1/2))/(a-c),
-(b-c+(b^2-b*a-c*b-c*a+a^2+c^2)^(1/2))/(a-c), 1]
[1,
1,1]
E =
[(b^2-b*a-c*b-
c*a+a^2+c^2)^(1/2), 0, 0]
[0, -(b^2-b*a-c*b-
c*a+a^2+c^2)^(1/2), 0]
[0, 0, b+c+a]

```

Note MATLAB might return the eigenvalues that appear on the diagonal of \(E\) in a different order. In this case, the corresponding eigenvectors, which are the columns of v , will also appear in a different order.

Suppose you want to replace the rather lengthy expression
\(\left(b^{\wedge} 2-b^{*} a-c * b-c * a+a^{\wedge} 2+c^{\wedge} 2\right)^{\wedge}(1 / 2)\)
throughout vand E. First, use subexpr
```

v = subexpr(v,'S')

```
which returns
```

$\mathrm{S}=$
$\left(b^{\wedge} 2-b * a-c * b-c * a+a \wedge 2+c^{\wedge} 2\right)^{\wedge}(1 / 2)$

```
v \(=\)
[ - (a+S-b)/(a-c), -(a-S-b)/(a-c), 1]
[ - \((b-c-S) /(a-c),-(b-c+S) /(a-c)\),

Next, substitute the symbol S into E with
```

E = subs(E,S,'S')

```
    E =
    [ S, 0, 0]
    \(\left[\begin{array}{llll}{[ } & 0, & -s, & 0\end{array}\right]\)
    [ \(0,0, b+c+a\) ]

Now suppose you want to evaluate \(v\) at \(a=10\). You can do this using the subs command:
```

subs(v,a,10)

```

This replaces all occurrences of a in \(v\) with 10 .


Notice, however, that the symbolic expression that S represents is unaffected by this substitution. That is, the symbol a in \(S\) is not replaced by 10 . The subs command is also a useful function for substituting in a variety of values for several variables in a particular expression. For example, suppose that in addition to substituting a \(=10\) in S, you also want to substitute the values for 2 and 10 for \(b\) and \(c\), respectively. The way to do this is to set values for \(a, b\), and \(c\) in the workspace. Then subs evaluates its input using the existing symbolic and double variables in the current workspace. In the example, you first set
```

a = 10; b = 2; c = 10;
subs(S)
ans =
8

```

To look at the contents of the workspace, type whos, which gives
\begin{tabular}{llrl} 
Name & Size & Bytes & Class \\
& & & \\
A & \(3 \times 3\) & 878 & sym object \\
E & \(3 \times 3\) & 888 & sym object \\
S & \(1 \times 1\) & 186 & sym object \\
a & \(1 \times 1\) & 8 & double array \\
ans & \(1 \times 1\) & 140 & sym object \\
b & \(1 \times 1\) & 8 & double array \\
C & \(1 \times 1\) & 8 & double array \\
v & \(3 \times 3\) & 982 & sym object
\end{tabular}
\(a, b\), and \(c\) are now variables of class double while \(A, E, S\), and \(v\) remain symbolic expressions (class sym).

If you want to preserve \(a, b\), and \(c\) as symbolic variables, but still alter their value within \(S\), use this procedure.
```

syms a b c
subs(S,{a,b,c},{10,2,10})
ans =
8

```

Typing whos reveals that \(a, b\), and c remain 1-by-1 sym objects.

The subs command can be combined with double to evaluate a symbolic expression numerically. Suppose you have the following expressions
syms t
\(M=\left(1-t^{\wedge} 2\right) * \exp \left(-1 / 2^{*} t^{\wedge} 2\right)\);
\(P=\left(1-t^{\wedge} 2\right) * \operatorname{sech}(t) ;\)
and want to see how \(M\) and \(P\) differ graphically.

One approach is to type
```

ezplot(M); hold on; ezplot(P); hold off;

```
but this plot does not readily help us identify the curves.


Instead, combine subs, double, and plot
```

T = -6:0.05:6;
MT = double(subs(M,t,T));
PT = double(subs(P,t,T));
plot(T,MT,'b',T,PT,'r-.')
title(' ')
legend('M','P')
xlabel('t'); grid

```
to produce a multicolored graph that indicates the difference between \(M\) and \(P\).


Finally the use of subs with strings greatly facilitates the solution of problems involving the Fourier, Laplace, or \(z\)-transforms.

\section*{Variable-Precision Arithmetic}

\section*{Overview}

There are three different kinds of arithmetic operations in this toolbox:
Numeric MATLAB floating-point arithmetic
Rational Maple's exact symbolic arithmetic
VPA Maple's variable-precision arithmetic
For example, the MATLAB statements
format long
1/2+1/3
use numeric computation to produce
0.83333333333333

With the Symbolic Math Toolbox, the statement
\(\operatorname{sym}(1 / 2)+1 / 3\)
uses symbolic computation to yield
5/6
And, also with the toolbox, the statements
digits(25)
vpa('1/2+1/3')
use variable-precision arithmetic to return
. 8333333333333333333333333
The floating-point operations used by numeric arithmetic are the fastest of the three, and require the least computer memory, but the results are not exact. The number of digits in the printed output of MATLAB double quantities is controlled by the format statement, but the internal representation is always the eight-byte floating-point representation provided by the particular computer hardware.

In the computation of the numeric result above, there are actually three roundoff errors, one in the division of 1 by 3 , one in the addition of \(1 / 2\) to the result of the division, and one in the binary to decimal conversion for the printed output. On computers that use IEEE floating-point standard arithmetic, the resulting internal value is the binary expansion of \(5 / 6\), truncated to 53 bits. This is approximately 16 decimal digits. But, in this particular case, the printed output shows only 15 digits.

The symbolic operations used by rational arithmetic are potentially the most expensive of the three, in terms of both computer time and memory. The results are exact, as long as enough time and memory are available to complete the computations.

Variable-precision arithmetic falls in between the other two in terms of both cost and accuracy. A global parameter, set by the function digits, controls the number of significant decimal digits. Increasing the number of digits increases the accuracy, but also increases both the time and memory requirements. The default value of digits is 32 , corresponding roughly to floating-point accuracy.

The Maple documentation uses the term "hardware floating-point" for what you are calling "numeric" or "floating-point" and uses the term "floating-point arithmetic" for what you are calling "variable-precision arithmetic."

\section*{Example: Using the Different Kinds of Arithmetic}

\section*{Rational Arithmetic}

By default, the Symbolic Math Toolbox uses rational arithmetic operations, i.e., Maple's exact symbolic arithmetic. Rational arithmetic is invoked when you create symbolic variables using the sym function.
The sym function converts a double matrix to its symbolic form. For example, if the double matrix is
\begin{tabular}{lll}
\(A=\) & & \\
1.1000 & 1.2000 & 1.3000 \\
2.1000 & 2.2000 & 2.3000 \\
3.1000 & 3.2000 & 3.3000
\end{tabular}
its symbolic form, \(S=\) sym (A), is
```

S =
[11/10, 6/5, 13/10]
[21/10, 11/5, 23/10]
[31/10, 16/5, 33/10]

```

For this matrix A, it is possible to discover that the elements are the ratios of small integers, so the symbolic representation is formed from those integers. On the other hand, the statement
```

E = [exp(1) (1+sqrt(5))/2; log(3) rand]

```
returns a matrix
E =
\begin{tabular}{ll}
2.71828182845905 & 1.61803398874989 \\
1.09861228866811 & 0.76209683302739
\end{tabular}
whose elements are not the ratios of small integers, so sym(E) reproduces the floating-point representation in a symbolic form:
```

ans =
[6121026514868074*2^(-51), 7286977268806824*2^(-52)]
[4947709893870346*2^(-52), 6864358026484820*2^(-53)]

```

\section*{Variable-Precision Numbers}

Variable-precision numbers are distinguished from the exact rational representation by the presence of a decimal point. A power of 10 scale factor, denoted by ' \(e\) ', is allowed. To use variable-precision instead of rational arithmetic, create your variables using the vpa function.

For matrices with purely double entries, the vpa function generates the representation that is used with variable-precision arithmetic. For example, if you apply vpa to the matrix \(S\) defined in the preceding section, with digits (4), by entering
vpa(S)

MATLAB returns the output
S =
[1.100, 1.200, 1.300]
[2.100, 2.200, 2.300]
[3.100, 3.200, 3.300]
Applying vpa to the matrix E defined in the preceding section, with digits(25), by entering
digits(25)
F = vpa(E)
returns
\(\mathrm{F}=\)
[2.718281828459045534884808, 1.414213562373094923430017]
[1.098612288668110004152823, .2189591863280899719512718]

\section*{Converting to Floating-Point}

To convert a rational or variable-precision number to its MATLAB floating-point representation, use the double function.

In the example, both double(sym(E)) and double(vpa(E)) return E.

\section*{Another Example}

The next example is perhaps more interesting. Start with the symbolic expression
```

f = sym('exp(pi*sqrt(163))')

```

The statement
double(f)
produces the printed floating-point value
```

ans =
2.625374126407687e+017

```

Using the second argument of vpa to specify the number of digits, vpa(f,18)
returns
262537412640768744.
whereas
vpa(f,25)
returns
262537412640768744.0000000
you suspect that \(f\) might actually have an integer value. This suspicion is reinforced by the 30 digit value, vpa ( \(\mathrm{f}, 30\) )
262537412640768743.999999999999

Finally, the 40 digit value, vpa(f,40)
262537412640768743.9999999999992500725944
shows that \(f\) is very close to, but not exactly equal to, an integer.

\section*{Linear Algebra}

\section*{Basic Algebraic Operations}

Basic algebraic operations on symbolic objects are the same as operations on MATLAB objects of class double. This is illustrated in the following example.

The Givens transformation produces a plane rotation through the angle \(t\). The statements
```

syms t;
G = [cos(t) sin(t); - sin(t) cos(t)]

```
create this transformation matrix.
```

G =
[cos(t), sin(t)]
[-sin(t), cos(t)]

```

Applying the Givens transformation twice should simply be a rotation through twice the angle. The corresponding matrix can be computed by multiplying \(G\) by itself or by raising \(G\) to the second power. Both
\[
A=G^{*} G
\]
and
\[
A=G^{\wedge} 2
\]
produce
```

A =
[\operatorname{cos(t)^2-sin(t)^2, 2* cos(t)*sin(t)]}
[-2* cos(t)*sin(t), cos(t)^2-sin(t)^2]

```

The simple function
\[
\mathrm{A}=\operatorname{simple}(\mathrm{A})
\]
uses a trigonometric identity to return the expected form by trying several different identities and picking the one that produces the shortest representation.
```

A =
[cos(2*t), sin(2*t)]
[-sin(2*t), cos(2*t)]

```

The Givens rotation is an orthogonal matrix, so its transpose is its inverse. Confirming this by
```

I = G.' *G

```
which produces
```

I =
[cos(t)^2+sin(t)^2, 0]
[0, cos(t)^2+sin(t)^2]

```
and then
```

I = simple(I)
I =
[1, 0]
[0, 1]

```

\section*{Linear Algebraic Operations}

The following examples show to do several basic linear algebraic operations using the Symbolic Math Toolbox.
The command
\[
H=\operatorname{hilb}(3)
\]
generates the 3-by-3 Hilbert matrix. With format short, MATLAB prints
H =
\begin{tabular}{lll}
1.0000 & 0.5000 & 0.3333 \\
0.5000 & 0.3333 & 0.2500 \\
0.3333 & 0.2500 & 0.2000
\end{tabular}

The computed elements of H are floating-point numbers that are the ratios of small integers. Indeed, H is a MATLAB array of class double. Converting H to a symbolic matrix
\[
H=\operatorname{sym}(H)
\]
gives
[ \(1,1 / 2,1 / 3]\)
\([1 / 2,1 / 3,1 / 4]\)
[1/3, 1/4, 1/5]
This allows subsequent symbolic operations on H to produce results that correspond to the infinitely precise Hilbert matrix, sym(hilb(3)), not its floating-point approximation, hilb (3). Therefore,
inv(H)
produces
[ 9, -36, 30]
\([-36,192,-180]\)
[ 30, -180, 180]
and
\(\operatorname{det}(H)\)
yields
1/2160
You can use the backslash operator to solve a system of simultaneous linear equations. For example, the commands
```

b = [llll
x = H\b % Solve Hx = b

```
produce the solution
[ 3]
[-24]
[ 30]
All three of these results, the inverse, the determinant, and the solution to the linear system, are the exact results corresponding to the infinitely precise, rational, Hilbert matrix. On the other hand, using digits (16), the command
\[
\mathrm{V}=\operatorname{vpa}(\mathrm{hilb}(3))
\]
returns
\(\left.\begin{array}{rr}{[1 .,} & .5000000000000000, \\ {[.5000000000000000,} & .3333333333333333, \\ {[.33333333333333333333]}\end{array}\right]\)

The decimal points in the representation of the individual elements are the signal to use variable-precision arithmetic. The result of each arithmetic operation is rounded to 16 significant decimal digits. When inverting the matrix, these errors are magnified by the matrix condition number, which for hilb (3) is about 500. Consequently,
```

inv(V)

```
which returns
ans \(=\)
[ 9.000000000000179, -36.00000000000080, 30.00000000000067]
[ -36.00000000000080, 192.0000000000042, -180.0000000000040]
[ 30.00000000000067, -180.0000000000040, 180.0000000000038]
shows the loss of two digits. So does
```

det(V)

```
which gives
\[
.462962962962953 e-3
\]
and
```

V\b

```
which is
[ 3.0000000000000041]
[-24.000000000000021]
[ 30.00000000000019\(]\)
Since H is nonsingular, calculating the null space of H with the command null(H)
returns an empty matrix, and calculating the column space of H with
```

colspace(H)

```
returns a permutation of the identity matrix. A more interesting example, which the following code shows, is to find a value \(s\) for \(\mathrm{H}(1,1)\) that makes H singular. The commands
```

syms s
H(1,1) = s
Z = det(H)
sol = solve(Z)

```
produce
```

H =
[s, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]
Z =
1/240*s-1/270
sol =
8/9

```

Then
```

H = subs(H,s,sol)

```
substitutes the computed value of sol for s in H to give
H =
[8/9, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]
Now, the command
\(\operatorname{det}(H)\)
returns
ans \(=\)
0
and
inv(H)
produces an error message
```

??? error using ==> inv
Error, (in inverse) singular matrix

```
because H is singular. For this matrix, \(\mathrm{Z}=\operatorname{null}(\mathrm{H})\) and \(\mathrm{C}=\) colspace \((\mathrm{H})\) are nontrivial:

Z =
[ 1]
[ -4]
[10/3]
C \(=\)
[ 1, 0]
[ 0, 1]
[ -3/10, 6/5]
It should be pointed out that even though \(H\) is singular, vpa(H) is not. For any integer value d, setting
digits(d)
and then computing
```

det(vpa(H))

```
inv(vpa(H))
results in a determinant of size \(10^{\wedge}(-d)\) and an inverse with elements on the order of \(10^{\wedge} \mathrm{d}\).

\section*{Eigenvalues}

The symbolic eigenvalues of a square matrix A or the symbolic eigenvalues and eigenvectors of A are computed, respectively, using the commands
```

E = eig(A)
[V,E] = eig(A)

```

The variable-precision counterparts are
\[
\begin{aligned}
& E=\operatorname{eig}(\operatorname{vpa}(A)) \\
& {[V, E]=\operatorname{eig}(\operatorname{vpa}(A))}
\end{aligned}
\]

The eigenvalues of A are the zeros of the characteristic polynomial of A, \(\operatorname{det}\left(A-x^{*} I\right)\), which is computed by
poly (A)

The matrix H from the last section provides the first example:
```

H =
[8/9, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]

```

The matrix is singular, so one of its eigenvalues must be zero. The statement
[T,E] = eig(H)
produces the matrices T and E. The columns of T are the eigenvectors of H :
```

T =
[1, 28/153+2/153*12589^(1/2), 28/153-2/153*12589^(12)]
[-4, 1, 1]
[10/3, 92/255-1/255*12589^(1/2), 292/255+1/255*12589^(12)]

```

Similarly, the diagonal elements of E are the eigenvalues of H :
E =
\begin{tabular}{lrr}
{\([0\),} & 0, & \(0]\) \\
{\([0,32 / 45+1 / 180 * 12589 \wedge(1 / 2)\),} & \(0]\) \\
{\([0\),} & 0, & \(\left.32 / 45-1 / 180 * 12589^{\wedge}(1 / 2)\right]\)
\end{tabular}

It may be easier to understand the structure of the matrices of eigenvectors, T , and eigenvalues, E , if you convert T and E to decimal notation. To do so, proceed as follows. The commands
```

Td = double(T)
Ed = double(E)
return

| Td $=$ | | |
| ---: | ---: | ---: |
| 1.0000 | 1.6497 | -1.2837 |
| -4.0000 | 1.0000 | 1.0000 |
| 3.3333 | 0.7051 | 1.5851 |

```
```

Ed =

| 0 | 0 | 0 |
| ---: | ---: | ---: |
| 0 | 1.3344 | 0 |
| 0 | 0 | 0.0878 |

```

The first eigenvalue is zero. The corresponding eigenvector (the first column of Td ) is the same as the basis for the null space found in the last section. The other two eigenvalues are the result of applying the quadratic formula to
```

x^2-64/45*x+253/2160

```
which is the quadratic factor in factor (poly (H)).
```

syms x
g = simple(factor(poly(H))/x);
solve(g)
ans =
[32/45+1/180*12589^(1/2)]
[32/45-1/180*12589^(1/2)]

```

Closed form symbolic expressions for the eigenvalues are possible only when the characteristic polynomial can be expressed as a product of rational polynomials of degree four or less. The Rosser matrix is a classic numerical analysis test matrix that illustrates this requirement. The statement
```

R = sym(gallery('rosser'))

```
generates
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{R} \\
\hline [ 611 & 196 & -192 & 407 & -8 & -52 & -49 & 29] \\
\hline [ 196 & 899 & 113 & -192 & -71 & -43 & -8 & -44] \\
\hline [-192 & 113 & 899 & 196 & 61 & 49 & 8 & \(52]\) \\
\hline [ 407 & -192 & 196 & 611 & 8 & 44 & 59 & -23] \\
\hline -8 & -71 & 61 & 8 & 411 & -599 & 208 & 208] \\
\hline [ -52 & -43 & 49 & 44 & -599 & 411 & 208 & 208] \\
\hline -49 & -8 & 8 & 59 & 208 & 208 & 99 & -911] \\
\hline 29 & -44 & 52 & -23 & 208 & 208 & -911 & \(99]\) \\
\hline
\end{tabular}

The commands
```

p = poly(R);
pretty(factor(p))

```
produce
\[
x(x-1020)\left(x^{2}-1020 x+100\right)\left(x^{2}-1040500\right)(x-1000)^{2}
\]

The characteristic polynomial (of degree 8) factors nicely into the product of two linear terms and three quadratic terms. You can see immediately that four of the eigenvalues are 0,1020 , and a double root at 1000 . The other four roots are obtained from the remaining quadratics. Use
```

eig(R)

```
to find all these values
\begin{tabular}{lr} 
ans \(=\) \\
{\([r\)} & \(0]\) \\
{\([\)} & \(1020]\) \\
{\([\)} & \(\left.10 \star 10405^{\wedge}(1 / 2)\right]\) \\
{\([\)} & \(\left.-10^{*} 10405^{\wedge}(1 / 2)\right]\) \\
{\([\)} & \(\left.510+100^{*} 26^{\wedge}(1 / 2)\right]\) \\
{\([\)} & \(\left.510-100^{\star} 26^{\wedge}(1 / 2)\right]\) \\
{\([\)} & \(1000]\) \\
{\([\)} & \(1000]\)
\end{tabular}

The Rosser matrix is not a typical example; it is rare for a full 8 -by- 8 matrix to have a characteristic polynomial that factors into such simple form. If you change the two "corner" elements of R from 29 to 30 with the commands
```

S = R; S(1,8) = 30; S(8,1) = 30;

```
and then try
```

p = poly(S)

```
you find
```

p =
x^8-4040*x^7+5079941*x^6+82706090*x^5-5327831918568*x^4+
4287832912719760*x^3-1082699388411166000*x^2+51264008540948000*x
+40250968213600000

```

You also find that factor ( \(p\) ) is \(p\) itself. That is, the characteristic polynomial cannot be factored over the rationals.

For this modified Rosser matrix
```

 F = eig(S)
 returns
F =
[.21803980548301606860857564424981]
[999.94691786044276755320289228602]
[1000.1206982933841335712817075454]
[1019.5243552632016358324933278291]
[1019.9935501291629257348091808173]
[1020.4201882015047278185457498840]
[-.17053529728768998575200874607757]
[-1020.0532142558915165931894252600]

```

Notice that these values are close to the eigenvalues of the original Rosser matrix. Further, the numerical values of \(F\) are a result of Maple's floating-point arithmetic. Consequently, different settings of digits do not alter the number of digits to the right of the decimal place.

It is also possible to try to compute eigenvalues of symbolic matrices, but closed form solutions are rare. The Givens transformation is generated as the matrix exponential of the elementary matrix
\[
A=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
\]

The Symbolic Math Toolbox commands
syms t
A \(=\operatorname{sym}\left(\left[\begin{array}{llll}0 & 1 ; & -1 & 0\end{array}\right]\right.\);
\(G=\operatorname{expm}(t * A)\)
return
[ \(\cos (\mathrm{t}), \sin (\mathrm{t})]\)
[ - sin(t), cos(t)]
Next, the command
\[
g=e i g(G)
\]
produces
```

g =
[cos(t)+(\operatorname{cos}(t)^2-1)^(1/2)]
[cos(t)-(cos(t)^2-1)^(1/2)]

```
you can use simple to simplify this form of g . Indeed, a repeated application of simple
```

for j = 1:4
[g,how] = simple(g)

```
end
produces the best result:
```

g =
[cos(t)+(-sin(t)^2)^(1/2)]
[cos(t)-(-sin(t)^2)^(1/2)]
how =
mwcos2sin
g =
[cos(t)+i*sin(t)]
[cos(t)-i*sin(t)]
how =
radsimp
g =
[exp(i*t)]
[1/exp(i*t)]
how =
convert(exp)
g =
[exp(i*t)]
[exp(-i*t)]
how =
simplify

```

Notice the first application of simple uses mwcos2sin to produce a sum of sines and cosines. Next, simple invokes radsimp to produce cos(t) + i*sin(t) for the first eigenvector. The third application of simple uses convert (exp) to change the sines and cosines to complex exponentials. The last application of simple uses simplify to obtain the final form.

\section*{Jordan Canonical Form}

The Jordan canonical form results from attempts to diagonalize a matrix by a similarity transformation. For a given matrix \(A\), find a nonsingular matrix \(V\), so that \(\operatorname{inv}(\mathrm{V}) * \mathrm{~A} * \mathrm{~V}\), or, more succinctly, \(\mathrm{J}=\mathrm{V} \backslash \mathrm{A} * \mathrm{~V}\), is "as close to diagonal as possible." For almost all matrices, the Jordan canonical form is the diagonal matrix of eigenvalues and the columns of the transformation matrix are the eigenvectors. This always happens if the matrix is symmetric or if it has distinct eigenvalues. Some nonsymmetric matrices with multiple eigenvalues cannot be diagonalized. The Jordan form has the eigenvalues on its diagonal, but some of the superdiagonal elements are one, instead of zero. The statement
\[
J=\text { jordan }(A)
\]
computes the Jordan canonical form of A. The statement
\[
[\mathrm{V}, \mathrm{~J}]=\text { jordan(A) }
\]
also computes the similarity transformation. The columns of V are the generalized eigenvectors of A.

The Jordan form is extremely sensitive to perturbations. Almost any change in A causes its Jordan form to be diagonal. This makes it very difficult to compute the Jordan form reliably with floating-point arithmetic. It also implies that A must be known exactly (i.e., without round-off error, etc.). Its elements must be integers, or ratios of small integers. In particular, the variable-precision calculation, jordan (vpa(A)), is not allowed.

For example, let
```

A = sym([12,32,66,116;-25,-76,-164,-294;
21,66,143,256;-6,-19,-41,-73])
A =
[12, 32, 66, 116]
[-25, -76, -164, -294]
[21, 66, 143, 256]
[-6, -19, -41, -73]

```

Then
\[
[\mathrm{V}, \mathrm{~J}]=\operatorname{jordan}(\mathrm{A})
\]
produces
```

V =
[4, -2, 4, 3]
[-6, 8, -11, -8]
[4, -7, 10, 7]
[-1, 2, -3, -2]
J =
[1, 1, 0, 0]
[0, 1, 0, 0]
[0, 0, 2, 1]
[0, 0, 0, 2]

```

Therefore A has a double eigenvalue at 1, with a single Jordan block, and a double eigenvalue at 2, also with a single Jordan block. The matrix has only two eigenvectors, \(\mathrm{V}(:, 1)\) and \(\mathrm{V}(:, 3)\). They satisfy
\[
\begin{aligned}
& \mathrm{A} * \mathrm{~V}(:, 1)=1 * \mathrm{~V}(:, 1) \\
& \mathrm{A} *(:, 3)=2 * V(:, 3)
\end{aligned}
\]

The other two columns of V are generalized eigenvectors of grade 2. They satisfy
\[
\begin{aligned}
& A^{*} V(:, 2)=1 * V(:, 2)+V(:, 1) \\
& A^{*} V(:, 4)=2 * V(:, 4)+V(:, 3)
\end{aligned}
\]

In mathematical notation, with \(\mathbf{v}_{j}=\mathrm{v}(:, j)\), the columns of V and eigenvalues satisfy the relationships
\[
\begin{aligned}
& \left(A-\lambda_{1} I\right) \boldsymbol{v}_{2}=\boldsymbol{v}_{1} \\
& \left(A-\lambda_{2} I\right) \boldsymbol{v}_{4}=\boldsymbol{v}_{3}
\end{aligned}
\]

\section*{Singular Value Decomposition}

Only the variable-precision numeric computation of the complete singular vector decomposition is available in the toolbox. One reason for this is that the formulas that result from symbolic computation are usually too long and
complicated to be of much use. If A is a symbolic matrix of floating-point or variable-precision numbers, then
\[
S=\operatorname{svd}(A)
\]
computes the singular values of A to an accuracy determined by the current setting of digits. And
\[
[U, S, V]=\operatorname{svd}(A) ;
\]
produces two orthogonal matrices, U and V , and a diagonal matrix, S , so that
\[
\mathrm{A}=\mathrm{U} * \mathrm{~S}^{*} \mathrm{~V}^{\prime} ;
\]

Consider the n-by-n matrix A with elements defined by
\[
A(i, j)=1 /(i-j+1 / 2)
\]

For \(n=5\), the matrix is
\begin{tabular}{rrrrr}
{\([2\)} & -2 & \(-2 / 3\) & \(-2 / 5\) & \(-2 / 7]\) \\
{\([2 / 3\)} & 2 & -2 & \(-2 / 3\) & \(-2 / 5]\) \\
{\([2 / 5\)} & \(2 / 3\) & 2 & -2 & \(-2 / 3]\) \\
{\([2 / 7\)} & \(2 / 5\) & \(2 / 3\) & 2 & \(-2]\) \\
{\([2 / 9\)} & \(2 / 7\) & \(2 / 5\) & \(2 / 3\) & \(2]\)
\end{tabular}

It turns out many of the singular values of these matrices are close to \(\pi\).
The most obvious way of generating this matrix is
```

for i=1:n
for j=1:n
A(i,j) = sym(1/(i-j+1/2));
end
end

```

The most efficient way to generate the matrix is
```

[J,I] = meshgrid(1:n);
A = sym(1./(I - J+1/2));

```

Since the elements of A are the ratios of small integers, vpa(A) produces a variable-precision representation, which is accurate to digits precision. Hence
\[
S=\operatorname{svd}(v p a(A))
\]
computes the desired singular values to full accuracy. With \(\mathrm{n}=16\) and digits (30), the result is
```

S =
[1.20968137605668985332455685357]
[2.69162158686066606774782763594]
[3.07790297231119748658424727354]
[3.13504054399744654843898901261]
[3.14106044663470063805218371924]
[3.14155754359918083691050658260]
[3.14159075458605848728982577119]
[3.14159256925492306470284863102]
[3.14159265052654880815569479613]
[3.14159265349961053143856838564]
[3.14159265358767361712392612384]
[3.14159265358975439206849907220]
[3.14159265358979270342635559051]
[3.14159265358979323325290142781]
[3.14159265358979323843066846712]
[3.14159265358979323846255035974]

```

There are two ways to compare \(S\) with pi, the floating-point representation of \(\pi\). In the vector below, the first element is computed by subtraction with variable-precision arithmetic and then converted to a double. The second element is computed with floating-point arithmetic:
```

format short e
[double(pi*ones(16,1)-S) pi-double(S)]

```

The results are
\begin{tabular}{lr}
\(1.9319 e+00\) & \(1.9319 e+00\) \\
\(4.4997 e-01\) & \(4.4997 e-01\) \\
\(6.3690 e-02\) & \(6.3690 e-02\) \\
\(6.5521 e-03\) & \(6.5521 e-03\) \\
\(5.3221 e-04\) & \(5.3221 e-04\) \\
\(3.5110 e-05\) & \(3.5110 e-05\) \\
\(1.8990 e-06\) & \(1.8990 e-06\) \\
\(8.4335 e-08\) & \(8.4335 e-08\) \\
\(3.0632 e-09\) & \(3.0632 e-09\) \\
\(9.0183 e-11\) & \(9.0183 e-11\) \\
\(2.1196 e-12\) & \(2.1196 e-12\) \\
\(3.8846 e-14\) & \(3.8636 e-14\) \\
\(5.3504 e-16\) & \(4.4409 e-16\) \\
\(5.2097 e-18\) & 0 \\
\(3.1975 e-20\) & 0 \\
\(9.3024 e-23\) & 0
\end{tabular}

Since the relative accuracy of pi is \(\mathrm{pi}^{*} \mathrm{eps}\), which is \(6.9757 \mathrm{e}-16\), either column confirms the suspicion that four of the singular values of the 16-by-16 example equal \(\pi\) to floating-point accuracy.

\section*{Eigenvalue Trajectories}

This example applies several numeric, symbolic, and graphic techniques to study the behavior of matrix eigenvalues as a parameter in the matrix is varied. This particular setting involves numerical analysis and perturbation theory, but the techniques illustrated are more widely applicable.

In this example, you consider a 3 -by- 3 matrix \(A\) whose eigenvalues are \(1,2,3\). First, you perturb \(A\) by another matrix \(E\) and parameter \(t: A \rightarrow A+t E\). As \(t\) increases from 0 to \(10^{-6}\), the eigenvalues \(\lambda_{1}=1, \lambda_{2}=2, \lambda_{3}=3\) change to \(\lambda_{1}{ }^{\prime} \approx 1.5596+0.2726 i, \lambda_{2}{ }^{\prime} \approx 1.5596-0.2726 i, \lambda_{3}{ }^{\prime} \approx 2.8808\).


This, in turn, means that for some value of \(t=\tau, 0<\tau<10^{-6}\), the perturbed matrix \(A(t)=A+t E\) has a double eigenvalue \(\lambda_{1}=\lambda_{2}\). The example shows how to find the value of t , called \(\tau\), where this happens.

The starting point is a MATLAB test example, known as gallery (3).
```

A = gallery(3)
A =
-149 -50 -154
537 180 546
-27 -9 -25

```

This is an example of a matrix whose eigenvalues are sensitive to the effects of roundoff errors introduced during their computation. The actual computed eigenvalues may vary from one machine to another, but on a typical workstation, the statements
```

format long
e = eig(A)

```
produce
```

e =
1.00000000001122
1.99999999999162
2.99999999999700

```

Of course, the example was created so that its eigenvalues are actually 1,2 , and 3 . Note that three or four digits have been lost to roundoff. This can be easily verified with the toolbox. The statements
```

B = sym(A);
e = eig(B)'
p = poly(B)
f = factor(p)

```
produce
```

e =
[1, 2, 3]
p =
x^3-6*x^2+11*x-6
f =
(x-1)*(x-2)*(x-3)

```

Are the eigenvalues sensitive to the perturbations caused by roundoff error because they are "close together"? Ordinarily, the values 1,2 , and 3 would be regarded as "well separated." But, in this case, the separation should be viewed on the scale of the original matrix. If A were replaced by A/1000, the eigenvalues, which would be \(.001, .002, .003\), would "seem" to be closer together.

But eigenvalue sensitivity is more subtle than just "closeness." With a carefully chosen perturbation of the matrix, it is possible to make two of its eigenvalues coalesce into an actual double root that is extremely sensitive to roundoff and other errors.

One good perturbation direction can be obtained from the outer product of the left and right eigenvectors associated with the most sensitive eigenvalue. The following statement creates
\[
E=[130,-390,0 ; 43,-129,0 ; 133,-399,0]
\]
the perturbation matrix
E =
\(130-390 \quad 0\)
43-129 0
\(\begin{array}{lll}133 & -399 & 0\end{array}\)
The perturbation can now be expressed in terms of a single, scalar parameter t . The statements
```

syms
x t

```
\(A=A+t * E\)
replace \(A\) with the symbolic representation of its perturbation:
```

A =
[-149+130*t, -50-390*t, -154]
[537+43*t, 180-129*t, 546]
[-27+133*t, -9-399*t, -25]

```

Computing the characteristic polynomial of this new A
\[
p=\operatorname{poly}(A)
\]
gives
```

p =
x^3-6*x^2+11*x-t*x^2+492512*t*x-6-1221271*t

```

Prettyprinting
```

pretty(collect(p,x))

```
shows more clearly that \(p\) is a cubic in \(x\) whose coefficients vary linearly with \(t\).
```

x c}+(-t-6)\mp@subsup{x}{}{2}+(492512t+11) x-6-1221271

```

It turns out that when \(t\) is varied over a very small interval, from 0 to \(1.0 \mathrm{e}-6\), the desired double root appears. This can best be seen graphically. The first figure shows plots of \(p\), considered as a function of \(x\), for three different values of \(t: t=0, t=0.5 e-6\), and \(t=1.0 e-6\). For each value, the eigenvalues are computed numerically and also plotted:
```

x = .8:.01:3.2;
for k = 0:2
c = sym2poly(subs(p,t,k*0.5e-6));
y = polyval(c,x);
lambda = eig(double(subs(A,t,k*0.5e-6)));
subplot(3,1,3-k)
plot(x,y,'-',x,0*x,':',lambda,0*lambda,'o')
axis([.8 3.2 -.5 .5])
text(2.25,.35,['t = ' num2str(k*0.5e-6)]);
end

```




The bottom subplot shows the unperturbed polynomial, with its three roots at 1,2 , and 3 . The middle subplot shows the first two roots approaching each other. In the top subplot, these two roots have become complex and only one real root remains.

The next statements compute and display the actual eigenvalues
```

e = eig(A);
pretty(e)

```
showing that e(2) and e(3) form a complex conjugate pair:




```

 2 3
 3
 3
 %1:=-2216286 t + 3189393 t + t + 3 (358392752910068940 t
 2
 4
 1/2
 - 1052829647418 t - 181922388795 t + 4432572 t - 3)
    ```

Next, the symbolic representations of the three eigenvalues are evaluated at many values of \(t\)
```

tvals = (2:-.02:0)' * 1.e-6;
r = size(tvals,1);
c = size(e,1);
lambda = zeros(r,c);
for k = 1:c
lambda(:,k) = double(subs(e(k),t,tvals));
end
plot(lambda,tvals)
xlabel('\lambda'); ylabel('t');
title('Eigenvalue Transition')

```
to produce a plot of their trajectories.


Above \(t=0.8 e^{-6}\), the graphs of two of the eigenvalues intersect, while below \(t=0.8 e^{-6}\), two real roots become a complex conjugate pair. What is the precise value of \(t\) that marks this transition? Let \(\tau\) denote this value of \(t\).

One way to find the exact value of \(\tau\) involves polynomial discriminants. The discriminant of a quadratic polynomial is the familiar quantity under the square root sign in the quadratic formula. When it is negative, the two roots are complex.

There is no discrim function in the toolbox, but there is one in Maple and it can be accessed through the toolbox's maple function. The statement
```

mhelp discrim

```
provides a brief explanation. Use these commands
```

syms a b c x
maple('discrim', a*x^2+b*x+c, x)

```
to show the generic quadratic's discriminant, \(b^{2}-4 a c\) :
```

ans =
-4*a*c+b^2

```

The discriminant for the perturbed cubic characteristic polynomial is obtained, using
```

discrim = maple('discrim',p,x)

```
which produces
```

[discrim =
4-5910096*t+1403772863224*t^2-477857003880091920*t^3+24256318506
0*t^4]

```

The quantity \(\tau\) is one of the four roots of this quartic. You can find a numeric value for \(\tau\) with the following code.
```

digits(24)
s = solve(discrim);
tau = vpa(s)
tau =
[1970031.04061804553618914]
[.783792490598e-6]
[.1076924816047e-5+.259079734916440764385242e-5*i]
[.1076924816047e-5-.259079734916440764385242e-5*i]

```

Of the four solutions, you know that
```

tau = tau(2)

```
is the transition point
```

tau =
.783792490602e-6

```
because it is closest to the previous estimate.
A more generally applicable method for finding \(\tau\) is based on the fact that, at a double root, both the function and its derivative must vanish. This results in two polynomial equations to be solved for two unknowns. The statement
```

sol = solve(p,diff(p,'x'))

```
solves the pair of algebraic equations \(p=0\) and \(d p / d x=0\) and produces
```

sol =
t: [4x1 sym]
x: [4x1 sym]

```

Find \(\tau\) now by
format short
tau = double(sol.t(2))
which reveals that the second element of sol.t is the desired value of \(\tau\) :
```

tau =
7.8379e-07

```

Therefore, the second element of sol.x
```

sigma = double(sol.x(2))

```
is the double eigenvalue
```

sigma =
1.5476

```

To verify that this value of \(\tau\) does indeed produce a double eigenvalue at \(\sigma=1.5476\), substitute \(\tau\) for \(t\) in the perturbed matrix \(A(t)=A+t E\) and find the eigenvalues of \(A(t)\). That is,
```

e = eig(double(subs(A,t,tau)))
e =
1.5476 + 0.0000i
1.5476 - 0.0000i
2.9048

```
confirms that \(\sigma=1.5476\) is a double eigenvalue of \(A(t)\) for \(t=7.8379 \mathrm{e}-07\).

\section*{Solving Equations}

\section*{Solving Algebraic Equations}

If \(S\) is a symbolic expression,
```

solve(S)

```
attempts to find values of the symbolic variable in \(S\) (as determined by findsym) for which \(S\) is zero. For example,
```

syms a b c x
S = a*x^2 + b*x + c;
solve(S)

```
uses the familiar quadratic formula to produce
ans =
\([1 / 2 / a *(-b+(b \wedge 2-4 * a * c) \wedge(1 / 2))]\)
[1/2/a*(-b-(b^2-4*a*c)^(1/2))]
This is a symbolic vector whose elements are the two solutions.
If you want to solve for a specific variable, you must specify that variable as an additional argument. For example, if you want to solve \(S\) for \(b\), use the command
\[
b=\operatorname{solve}(S, b)
\]
which returns
\[
\begin{aligned}
& b= \\
& -\left(a^{*} x^{\wedge} 2+c\right) / x
\end{aligned}
\]

Note that these examples assume equations of the form \(f(x)=0\). If you need to solve equations of the form \(f(x)=q(x)\), you must use quoted strings. In particular, the command
\[
s=\operatorname{solve}\left(\cos ^{\prime}\left(2^{*} x\right)+\sin (x)=1^{\prime}\right)
\]
returns a vector with four solutions.
```

S =
[0]
[pi]
[1/6*pi]
[5/6*pi]

```

\section*{Several Algebraic Equations}

This section explains how to solve systems of equations using the Symbolic Math Toolbox. As an example, suppose you have the system
\[
\begin{aligned}
& x^{2} y^{2}=0 \\
& x-\frac{y}{2}=\alpha
\end{aligned}
\]
and you want to solve for \(x\) and \(y\). First create the necessary symbolic objects. syms x y alpha

There are several ways to address the output of solve. One is to use a two-output call
```

[x,y] = solve(x^2*y^2, x-y/2-alpha)

```
which returns
```

x =
[0]
[0]
[alpha]
[alpha]
y =
[-2*alpha]
[-2*alpha]
[0]
[0]

```

Consequently, the solution vector
\[
v=[x, y]
\]
appears to have redundant components. This is due to the first equation \(x^{2} y^{2}=0\), which has two solutions in \(x\) and \(y: x= \pm 0, y= \pm 0\). Changing the equations to
```

eqs1 = 'x^2* y^2=1, x-y/2-alpha'
[x,y] = solve(eqs1)

```
produces four distinct solutions:
```

x =
[1/2*alpha+1/2*(alpha^2+2)^(1/2)]
[1/2*alpha-1/2*(alpha^2+2)^(1/2)]
[1/2*alpha+1/2*(alpha^2-2)^(1/2)]
[1/2*alpha-1/2*(alpha^2-2)^(1/2)]
y =
[-alpha+(alpha^2+2)^(1/2)]
[-alpha-(alpha^2+2)^(1/2)]
[-alpha+(alpha^2-2)^(1/2)]
[-alpha-(alpha^2-2)^(1/2)]

```

Since you did not specify the dependent variables, solve uses findsym to determine the variables.

This way of assigning output from solve is quite successful for "small" systems. Plainly, if you had, say, a 10-by-10 system of equations, typing
\[
[x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8, x 9, x 10]=\text { solve }(\ldots)
\]
is both awkward and time consuming. To circumvent this difficulty, solve can return a structure whose fields are the solutions. In particular, consider the system \(u^{\wedge} 2-v^{\wedge} 2=a^{\wedge} 2, u+v=1, a^{\wedge} 2-2^{*} a=3\). The command

S = solve('u^2-v^2 = a^2','u + v = 1','a^2-2*a = 3')
returns
S =
a: [2x1 sym]
u: [2x1 sym]
v: [2x1 sym]

The solutions for a reside in the "a-field" of S. That is,

\section*{S.a}
produces
ans =
[ 3]
[ - 1]
Similar comments apply to the solutions for \(u\) and \(v\). The structure \(S\) can now be manipulated by field and index to access a particular portion of the solution. For example, if you want to examine the second solution, you can use the following statement
```

s2 = [S.a(2), S.u(2), S.v(2)]

```
to extract the second component of each field.
s2 =
\(\left[\begin{array}{lll}-1, & 1, & 0\end{array}\right.\)
The following statement
M = [S.a, S.u, S.v]
creates the solution matrix M
\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \mathrm{M}= \\
& {[\quad 3,} \\
& {[-1,} \\
& {\left[\begin{array}{ll}
\text {, }
\end{array}\right.}
\end{aligned}
\]} \\
\hline \\
\hline \\
\hline
\end{tabular}
whose rows comprise the distinct solutions of the system.
Linear systems of simultaneous equations can also be solved using matrix division. For example,
```

clear u v x y
syms u v x y
S = solve(x+2*y-u, 4*x+5*y-v);
sol = [S.x;S.y]

```
and
\[
\begin{aligned}
& A=[12 ; 45] ; \\
& b=[u ; v] ; \\
& z=A \backslash b
\end{aligned}
\]
result in
sol =
[ \(-5 / 3^{*} u+2 / 3^{*} v\) ]
[ \(4 / 3^{*} u-1 / 3^{*} v\) ]
z =
[ \(-5 / 3 * u+2 / 3 * v\) ]
[ \(4 / 3^{*} u-1 / 3^{*} v\) ]
Thus s and z produce the same solution, although the results are assigned to different variables.

\section*{Single Differential Equation}

The function dsolve computes symbolic solutions to ordinary differential equations. The equations are specified by symbolic expressions containing the letter D to denote differentiation. The symbols D2, D3, ... DN, correspond to the second, third, ..., Nth derivative, respectively. Thus, D2y is the Symbolic Math Toolbox equivalent of \(d^{2} y / d t^{2}\). The dependent variables are those preceded by \(D\) and the default independent variable is \(t\). Note that names of symbolic variables should not contain \(D\). The independent variable can be changed from t to some other symbolic variable by including that variable as the last input argument.

Initial conditions can be specified by additional equations. If initial conditions are not specified, the solutions contain constants of integration, C1, C2, etc.

The output from dsolve parallels the output from solve. That is, you can call dsolve with the number of output variables equal to the number of dependent variables or place the output in a structure whose fields contain the solutions of the differential equations.

\section*{Example 1}

The following call to dsolve
```

dsolve('Dy=1+y^2')

```
uses \(y\) as the dependent variable and \(t\) as the default independent variable.
The output of this command is
```

ans =
tan(t+C1)

```

To specify an initial condition, use
```

y = dsolve('Dy=1+y^2','y(0)=1')

```

This produces
```

y =
tan(t+1/4*pi)

```

Notice that \(y\) is in the MATLAB workspace, but the independent variable \(t\) is not. Thus, the command \(\operatorname{diff}(y, t)\) returns an error. To place \(t\) in the workspace, type syms \(t\).

\section*{Example 2}

Nonlinear equations may have multiple solutions, even when initial conditions are given:
```

x = dsolve('(Dx)^2+x^2=1','x(0)=0')

```
results in
\[
x=
\]
\[
[\sin (t)]
\]
\[
[-\sin (t)]
\]

\section*{Example 3}

Here is a second order differential equation with two initial conditions. The commands
\[
\begin{aligned}
& y=\text { dsolve('D2y=cos(2*x)-y','y(0)=1','Dy(0)=0', 'x'); } \\
& \text { simplify(y) }
\end{aligned}
\]
produce
```

ans =
4/3*}\operatorname{cos}(x)-2/\mp@subsup{3}{}{*}\operatorname{cos}(x)^2+1/

```

The key issues in this example are the order of the equation and the initial conditions. To solve the ordinary differential equation
\[
\begin{aligned}
& \frac{d^{3} u}{d x^{3}}=u \\
& u(0)=1, u^{\prime}(0)=-1, u^{\prime \prime}(0)=\pi
\end{aligned}
\]
simply type
\[
u=\text { dsolve('D3u=u','u(0)=1','Du(0)=-1','D2u(0) = pi','x') }
\]

Use D3u to represent \(d^{3} u / d x^{3}\) and D2u(0) for \(u^{\prime \prime}(0)\).

\section*{Several Differential Equations}

The function dsolve can also handle several ordinary differential equations in several variables, with or without initial conditions. For example, here is a pair of linear, first-order equations.
```

S = dsolve('Df = 3*f+4*g', 'Dg = -4*f+3*g')

```

The computed solutions are returned in the structure S. You can determine the values of \(f\) and \(g\) by typing
```

f = S.f
f =
exp(3*t)*(C1*sin(4*t)+C2* cos(4*t))
g = S.g
g =
exp(3*t)*(C1*cos(4*t)-C2*sin(4*t))

```

If you prefer to recover \(f\) and \(g\) directly as well as include initial conditions, type
\[
\left.[f, g]=\text { dsolve('Df=3*f+4*g, } D g=-4^{*} f+3^{*} g '^{\prime}, \quad ' f(0)=0, g(0)=1^{\prime}\right)
\]
```

f =
exp(3*t)*sin(4*t)
g =
exp(3*t)*\operatorname{cos}(4*t)

```

This table details some examples and Symbolic Math Toolbox syntax. Note that the final entry in the table is the Airy differential equation whose solution is referred to as the Airy function.
\begin{tabular}{|c|c|}
\hline Differential Equation & MATLAB Command \\
\hline \[
\frac{d y}{d t}+4 y(t)=e^{-t}
\] & \[
\begin{aligned}
& y=\text { dsolve('Dy+4*y }=\exp (-t) ', \\
& \left.' y(0)=1^{\prime}\right)
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{\(y(0)=1\)} \\
\hline \[
\frac{d^{2} y}{d x^{2}}+4 y(x)=e^{-2 x}
\] &  \\
\hline \multicolumn{2}{|l|}{\(y(0)=0, y(\pi)=0\)} \\
\hline \[
\frac{d^{2} y}{d x^{2}}=x y(x)
\] & ```
y = dsolve('D2y = x*y','y(0) = 0',
'y(3) = besselk(1/3, 2*sqrt(3))/pi',
'x')
``` \\
\hline \[
y(0)=0, y(3)=\frac{1}{\pi} K_{\frac{1}{3}}(2 \sqrt{3})
\] & \\
\hline (The Airy equation) & \\
\hline
\end{tabular}

The Airy function plays an important role in the mathematical modeling of the dispersion of water waves. It is a nontrivial exercise to show that the Fourier transform of the Airy function is \(\exp \left(i w^{3} / 3\right)\).

\section*{Special Mathematical Functions}

Over fifty of the special functions of classical applied mathematics are available in the toolbox. These functions are accessed with the mfun function, which numerically evaluates a special function for the specified parameters. This allows you to evaluate functions that are not available in standard MATLAB, such as the Fresnel cosine integral. In addition, you can evaluate several MATLAB special functions in the complex plane, such as the error function.

For example, suppose you want to evaluate the hyperbolic cosine integral at the points \(2+i, 0\), and 4.5 . First type
```

help mfunlist

```
to see the list of functions available for mfun. This list provides a brief mathematical description of each function, its Maple name, and the parameters it needs. From the list, you can see that the hyperbolic cosine integral is called Chi, and it takes one complex argument. For additional information, you can access Maple help on the hyperbolic cosine integral using
```

mhelp Chi

```

Now type
\[
\begin{aligned}
& z=[2+i \quad 04.5] \\
& w=\text { mfun('Chi', z) }
\end{aligned}
\]
which returns
```

w =
2.0303 + 1.7227i NaN 13.9658

```
mfun returns NaNs where the function has a singularity. The hyperbolic cosine integral has a singularity at \(z=0\).
These special functions can be used with the mfun function:
- Airy Functions
- Binomial Coefficients
- Riemann Zeta Functions
- Bernoulli Numbers and Polynomials
- Euler Numbers and Polynomials
- Harmonic Function
- Exponential Integrals
- Logarithmic Integral
- Sine and Cosine Integrals
- Hyperbolic Sine and Cosine Integrals
- Shifted Sine Integral
- Fresnel Sine and Cosine Integral
- Dawson's Integral
- Error Function
- Complementary Error Function and its Iterated Integrals
- Gamma Function
- Logarithm of the Gamma Function
- Incomplete Gamma Function
- Digamma Function
- Polygamma Function
- Generalized Hypergeometric Function
- Bessel Functions
- Incomplete Elliptic Integrals
- Complete Elliptic Integrals
- Complete Elliptic Integrals with Complementary Modulus
- Beta Function
- Dilogarithm Integral
- Lambert's W Function
- Dirac Delta Function (distribution)
- Heaviside Function (distribution)

The orthogonal polynomials listed below are available with the Extended Symbolic Math Toolbox:
- Gegenbauer
- Hermite
- Laguerre
- Generalized Laguerre
- Legendre
- Jacobi
- Chebyshev of the First and Second Kind

\section*{Diffraction}

This example is from diffraction theory in classical electrodynamics. (J.D. Jackson, Classical Electrodynamics, John Wiley \& Sons, 1962.)
Suppose you have a plane wave of intensity \(I_{0}\) and wave number \(k\). Assume that the plane wave is parallel to the \(x y\)-plane and travels along the \(z\)-axis as shown below. This plane wave is called the incident wave. A perfectly conducting flat diffraction screen occupies half of the \(x y\)-plane, that is \(x<0\). The plane wave strikes the diffraction screen, and you observe the diffracted wave from the line whose coordinates are (\(x, 0, z_{0}\)), where \(z_{0}>0\).

Diffraction screen

The intensity of the diffracted wave is given by
\[
I=\frac{I_{0}}{2}\left[\left(C(\zeta)+\frac{1}{2}\right)^{2}+\left(S(\zeta)+\frac{1}{2}\right)^{2}\right]
\]
where
\[
\zeta=\sqrt{\frac{k}{2 z_{0}}} \cdot x
\]
and \(C(\zeta)\) and \(S(\zeta)\) are the Fresnel cosine and sine integrals:
\[
\begin{aligned}
& C(\zeta)=\int_{0}^{\zeta} \cos \left(\frac{\pi}{2}-t^{2}\right) d t \\
& S(\zeta)=\int_{0}^{\zeta} \sin \left(\frac{\pi}{2}-t^{2}\right) d t
\end{aligned}
\]

How does the intensity of the diffracted wave behave along the line of observation? Since \(k\) and \(z_{0}\) are constants independent of \(x\), you set
\[
\sqrt{\frac{k}{2 z_{0}}}=1
\]
and assume an initial intensity of \(I_{0}=1\) for simplicity.
The following code generates a plot of intensity as a function of \(x\) :
```

x = -50:50;
C = mfun('FresnelC',x);
S = mfun('FresnelS',x);
IO = 1;
T = (C+1/2).^2 + (S+1/2).^2;
I = (IO/2)*T;
plot(x,I);
xlabel('x');
ylabel('I(x)');
title('Intensity of Diffracted Wave');

```


You see from the graph that the diffraction effect is most prominent near the edge of the diffraction screen (\(x=0\)), as you expect.

Note that values of \(x\) that are large and positive correspond to observation points far away from the screen. Here, you would expect the screen to have no effect on the incident wave. That is, the intensity of the diffracted wave should be the same as that of the incident wave. Similarly, \(x\) values that are large and negative correspond to observation points under the screen that are far away from the screen edge. Here, you would expect the diffracted wave to have zero intensity. These results can be verified by setting
```

X = [Inf -Inf]

```
in the code to calculate \(I\).

\section*{Using Maple Functions}

The maple function lets you access Maple functions directly. This function takes sym objects, strings, and doubles as inputs. It returns a symbolic object, character string, or double corresponding to the class of the input. You can also use the maple function to debug symbolic math programs that you develop.

\section*{Simple Example}

As an example, you can use the Maple function gcd to calculate the greatest common divisor of two integers or two polynomials. For example, to calculate the greatest common divisor of 14 and 21, enter
```

maple('gcd(14, 21)')
ans =
7

```

To calculate the greatest common divisor of \(x^{\wedge} 2-y^{\wedge} 2\) and \(x^{\wedge} 3-y^{\wedge} 3\) enter
```

maple('gcd(x^2-y^2, x^3-y^3)')
ans =
-y+x

```

To learn more about the function gcd, you can bring up its reference page by entering
```

doc gcd

```

As an alternative to typing the maple command every time you want to access gcd, you can write a simple M-file that does this for you. To do so, first create the M-file gcd in the subdirectory toolbox/symbolic/@sym of the directory where MATLAB is installed, and include the following commands in the M-file:
```

function g = gcd(a, b)
g = maple('gcd',a, b);

```

If you run this file
```

syms x y
z = gcd(x^2-y^2, x^3- y^3)
w = gcd(6, 24)

```
```

you get
z =
$-y+x$
W =
6

```

Now, extend the function so that you can take the gcd of two matrices in a pointwise fashion:
```

function g = gcd(a,b)
if any(size(a) ~= size(b))
error('Inputs must have the same size.')
end
for k = 1: prod(size(a))
g(k) = maple('gcd',a(k), b(k));
end
g = reshape(g,size(a));

```

Running this on some test data
```

A = sym([2 4 6; 3 5 6; 3 6 4]);
B = sym([40 30 8; 17 60 20; 6 3 20]);
gcd(A,B)

```
you get the result
```

ans =

```
[2, 2, 2]
[1, 5, 2]
[3, 3, 4]

\section*{Vectorized Example}

Suppose you want to calculate the sine of a symbolic matrix. One way to do this is
```

function y = sin1(x)
for k = 1: prod(size(x))
y(k) = maple('sin',x(k));
end
y = reshape(y,size(x));

```

So the statements
```

syms x y
A = [0 x; y pi/4]
sin1(A)
return
A =
[ 0, x ]
[ y, pi/4 ]
ans =
[ 0, sin(x) ]
[ sin(y), 1/2*2^(1/2) ]

```

A more efficient way to do this is to call Maple just once, using the Maple map function. The map function applies a Maple function to each element of an array. In the sine calculation example, this looks like
```

function y = sin2(x)
if prod(size(x)) == 1
% scalar case
y = maple('sin',x);
else
% array case
y = maple('map','sin',x);
end

```

Note that the sin2 function treats scalar and array cases differently. It applies the map function to arrays but not to scalars. This is because map applies a function to each operand of a scalar.

Because the sin2 function calls Maple only once, it is considerably faster than the sin1 function, which calls Maple prod(size(A)) number of times.

The map function can also be used for Maple functions that require multiple input arguments. In this case, the syntax is
```

maple('map', Maple function, sym array, arg2, arg3, ..., argn)

```

For example, one way to call the collect M-file is collect (\(\mathrm{S}, \mathrm{x}\)). In this case, the collect function collects all the coefficients with the same power of \(x\) for each element in \(S\). The core section of the implementation is shown below.
```

r = maple('map','collect',sym(s),sym(x));

```

For additional information on the Maple map function, type
mhelp map

\section*{Debugging}

The maple command provides two debugging facilities: trace mode and a status output argument.

\section*{Trace Mode}

The command maple traceon causes all subsequent Maple statements and results to be printed to the screen. For example,
```

maple traceon
a = sym('a');
exp(2*a)

```
prints all calls made to the Maple kernel for calculating \(\exp (2 * a)\) :
```

statement:

```
(2) *(a);
result:
2*a
statement:
2*a;
result:
2*a
statement:
exp(2*a);
result:
\(\exp (2 * a)\)
statement:
exp(2*a);
result:
\(\exp (2 * a)\)
ans \(=\)
\(\exp (2 * a)\)
To revert back to suppressed printing, use maple traceoff.

\section*{Status Output Argument}

The maple function optionally returns two output arguments, result and status. If the maple call succeeds, Maple returns the result in the result
argument and zero in the status argument. If the call fails, Maple returns an error code (a positive integer) in the status argument and a corresponding warning/error message in the result argument.

For example, the Maple discrim function calculates the discriminant of a polynomial and has the syntax \(\operatorname{discrim}(p, x)\), where \(p\) is a polynomial in \(x\). Suppose you forget to supply the second argument when calling the discrim function
```

syms a b c x
[result, status] = maple('discrim', a*x^2+b*x+c)

```

Maple returns
```

result =
Error, (in discrim) invalid arguments
status =
2

```

If you then include \(x\)
```

[result, status] = maple('discrim', a*x^2+b*x+c, x)

```
you get the following
```

result =
-4*a*c+b^2
status =
0

```

\section*{Extended Symbolic Math Toolbox}

The Extended Symbolic Math Toolbox allows you to access all nongraphics Maple packages, Maple programming features, and Maple procedures. The Extended Toolbox thus provides access to a large body of mathematical software written in the Maple language.

Maple programming features include looping (for ... do ... od, while ... do ... od) and conditionals (if ... elif ... else ... fi). See The Maple Handbook for information on how to use these and other features.

This section explains how to load Maple packages and how to use Maple procedures. For additional information, consult these references.
[1] Schwarz, David, Introduction to Maple, Apprentice Hall, 1999.
[2] Graven, Frank, The Maple Book, Chapman \& Hall/CRC, 2001.
[3] Wright, Francis, Computing with Maple, Chapman \& Hall/CRC, 2001.

\section*{Packages of Library Functions}

You can use specialized libraries, or "packages," with the Extended Toolbox. The available packages are listed in "Maple Packages" on page 2-110.

You can use the Maple with command to load these packages. For example, if you want to use the orthogonal polynomials package, first get the Maple name of this package, using the statement
```

mhelp index[packages]

```
which returns
```

Index of descriptions for packages of library functions
Description:

- The following packages are available:
orthopoly orthogonal polynomials
...

```

You can then can access information about the package orthopoly by entering mhelp orthopoly

To load the package, type
```

maple('with(orthopoly);')

```

This returns
```

ans =
[G, H, L, P, T, U]

```
which is a listing of function names in the orthopoly package. These functions are now loaded in the Maple workspace, and you can use them as you would any regular Maple function.

\section*{Maple Packages}

The Extended Symbolic Math Toolbox contains the following packages of Maple functions:
- Combinatorial Functions
- Differential Equation Tools
- Differential Forms
- Domains of Computation
- Euclidean Geometry
- Gaussian Integers
- Gröbner Bases
- Permutation and Finitely Presented Groups
- Lie Symmetries
- Boolean Logic
- Graph Networks
- Newman-Penrose Formalism
- Number Theory
- Numerical Approximation
- Orthogonal Polynomials
- p-adic Numbers
- Formal Power Series
- Projective Geometry
- Simplex Linear Optimization
- Statistics
- Total Orders on Names
- Galois Fields
- Linear Recurrence Relation Tools
- Financial Mathematics
- Rational Generating Functions
- Tensor Computations

\section*{Procedure Example}

The following example shows how you can access a Maple procedure through the Extended Symbolic Math Toolbox. The example computes either symbolic or variable-precision numeric approximations to \(\pi\), using a method derived by Richard Brent based from the arithmetic-geometric mean algorithm of Gauss. Here is the Maple source code:
```

pie := proc(n)
\# pie(n) takes n steps of an arithmetic geometric mean
\# algorithm for computing pi. The result is a symbolic
\# expression whose length roughly doubles with each step.
\# The number of correct digits in the evaluated string also
\# roughly doubles with each step.
\# Example: pie(5) is a symbolic expression with 1167
\# characters which, when evaluated, agrees with pi to 84
\# decimal digits.
local a,b,c,d,k,t;
a := 1:
b := sqrt(1/2):
c := 1/4:
t := 1:
for k from 1 to n do
d := (b-a)/2:
b := sqrt(a*b):
a := a+d:
c := c-t*d^2:

```
```

    t := 2*t:
    od;
    (a+b)^2/(4*c):
    end;

```

Copy the source code and paste it into the MATLAB Editor. Then save the file as pie. src in your Work directory. Using the Extended Symbolic Math Toolbox, the MATLAB statement
```

procread('pie.src')

```
reads the specified file, deletes comments and newline characters, and sends the resulting string to Maple. (The MATLAB ans variable then contains a string representation of the pie.src file.)
You can access the pie function using the maple function. The statement
\[
p=\operatorname{maple}(' p i e ', 5)
\]
returns a string representing the solution that begins and ends with
```

p =
1/4*(1/32+1/64*2^(1/2)+1/32*2^(3/4)+ ...
... *2^(1/2))*2^(3/4))^(1/2))^(1/2))^2)

```

You can use the sym command to convert the string to a symbolic object.
The assignment to the variable \(b\) in the second executable line,
```

b := sqrt(1/2)

```
causes the entire computation to be done symbolically. You can change the computation from symbolic to numeric by modifying the assignment statement to include decimal points:
```

b := sqrt(1./2.)

```

With this assignment, the entire computation uses variable-precision arithmetic at the current setting of digits. The commands
```

digits(100)
procread('pie.src')
p = maple('pie',5)

```
produce a 100-digit result:
```

p =
3.14159265358979323 ... 5628703211672038

```

The last 16 digits differ from those of \(\pi\) because, with five iterations, the algorithm gives only 84 digits.

Note that you can define your own MATLAB M-file that accesses a Maple procedure:
```

function p = pie1(n)
p = maple('pie',n)

```

\section*{Reference}

\author{
Functions - Categorical List (p. 3-2) Symbolic Math Toolbox functions, arranged by category \\ Functions - Alphabetical List (p. 3-7) An alphabetical list of Symbolic Math Toolbox functions
}

\section*{Functions - Categorical List}

This chapter provides detailed descriptions of all Symbolic Math Toolbox functions. It begins with tables of these functions and continues with the reference pages for the functions in alphabetical order.

\section*{Calculus}
\begin{tabular}{ll}
diff & Differentiate \\
int & Integrate \\
jacobian & Jacobian matrix \\
limit & Limit of an expression \\
symsum & Summation of series \\
taylor & Taylor series expansion
\end{tabular}

\section*{Linear Algebra}
colspace Basis for column space
det Determinant
diag
eig
expm
inv
jordan
null
poly
rank
rref
svd

Create or extract diagonals
Eigenvalues and eigenvectors
Matrix exponential
Matrix inverse
Jordan canonical form
Basis for null space
Characteristic polynomial
Matrix rank
Reduced row echelon form
Singular value decomposition
```

tril Lower triangle
triu Upper triangle

```

\section*{Simplification}
collect
expand
factor
horner
numden
simple
simplify
subexpr

Collect common terms
Expand polynomials and elementary functions
Factor
Nested polynomial representation
Numerator and denominator
Search for shortest form
Simplification
Rewrite in terms of subexpressions

\section*{Solution of Equations}
compose Functional composition
dsolve
finverse
solve

Solution of differential equations
Functional inverse
Solution of algebraic equations

\section*{Variable Precision Arithmetic}
digits Set variable precision accuracy
vpa
Variable precision arithmetic

\section*{Arithmetic Operations}
\(+\quad\) Addition
Subtraction
Multiplication
\begin{tabular}{ll}
.\(*\) & Array multiplication \\
/ & Right division \\
.\(/\) & Array right division \\
I & Left division \\
.| & Array left division \\
. & Matrix or scalar raised to a power \\
.^ & Array raised to a power \\
. & Complex conjugate transpose \\
. & Real transpose
\end{tabular}

\section*{Special Functions}
\begin{tabular}{ll}
cosint & Cosine integral, \(C i(x)\) \\
dirac & Dirac delta function \\
heaviside & Heaviside function \\
hypergeom & Generalized hypergeometric function \\
lambertw & Solution of \(\lambda(x) e^{\lambda(x)}=x\) \\
sinint & Sine integral, \(\operatorname{Si}(x)\) \\
zeta & Riemann zeta function
\end{tabular}

\section*{Access To Maple}
\begin{tabular}{ll}
maple & Access Maple kernel \\
mapleinit & Initialize Maple \\
mfun & Numeric evaluation of Maple functions \\
mhelp & Maple help \\
mfunlist & List of functions for mfun \\
procread & Install a Maple procedure
\end{tabular}

\section*{Pedagogical and Graphical Applications}
\begin{tabular}{ll}
ezcontour & Contour plotter \\
ezcontourf & Filled contour plotter \\
ezmesh & Mesh plotter \\
ezmeshc & Combined mesh and contour plotter \\
ezplot & Function plotter \\
ezplot3 & 3-D curve plotter \\
ezpolar & Polar coordinate plotter \\
ezsurf & Surface plotter \\
ezsurfc & Combined surface and contour plotter \\
funtool & Function calculator \\
rsums & Riemann sums \\
taylortool & Taylor series calculator
\end{tabular}

\section*{Conversions}
char
double
int8
int16
int32
int64
poly2sym
single
sym2poly
uint8
uint16

Convert sym object to string
Convert symbolic matrix to double
Convert symbolic matrix to signed 8-bit integer
Convert symbolic matrix to signed 16-bit integer
Convert symbolic matrix to signed 32-bit integer
Convert symbolic matrix to signed 64-bit integer
Function calculator
Convert symbolic matrix to single
Symbolic polynomial to coefficient vector
Convert symbolic matrix to unsigned 8-bit integer
Convert symbolic matrix to unsigned 16-bit integer
```

uint32
uint64
Convert symbolic matrix to unsigned 32-bit integer
uint64
Convert symbolic matrix to unsigned 64-bit integer

```

\section*{Basic Operations}
\begin{tabular}{ll}
ccode & C code representation of a symbolic expression \\
ceil & Round toward plus infinity \\
conj & Complex conjugate \\
findsym & Determine symbolic variables \\
fix & Round toward zero \\
floor & Round toward minus infinity \\
fortran & Fortran representation of a symbolic expression \\
imag & Imaginary part of a complex number \\
latex & LaTeX representation of a symbolic expression \\
pretty & Pretty print a symbolic expression \\
real & Real part of an imaginary number \\
sym & Create symbolic object \\
syms & Shortcut for creating multiple symbolic objects
\end{tabular}

\section*{Integral Transforms}
\begin{tabular}{ll}
fourier & Fourier transform \\
ifourier & Inverse Fourier transform \\
ilaplace & Inverse Laplace transform \\
iztrans & Inverse \(z\)-transform \\
laplace & Laplace transform \\
ztrans & \(z\)-transform
\end{tabular}

\section*{Functions - Alphabetical List}

This section contains function reference pages listed alphabetically.

\section*{Arithmetic Operations}

\section*{Purpose Perform arithmetic operations on symbols}

\section*{Syntax \(\quad A+B\)}

A-B
A*B A.*B
A\B A. \B
A/B A./B
\(A^{\wedge} B\) A. \({ }^{\wedge}\) B
A' A.'
Description \(+\quad\) Matrix addition. \(A+B\) adds \(A\) and \(B . A\) and \(B\) must have the same dimensions, unless one is scalar.
- Matrix subtraction. A - B subtracts B from A. A and B must have the same dimensions, unless one is scalar.
* Matrix multiplication. \(A * B\) is the linear algebraic product of \(A\) and \(B\). The number of columns of \(A\) must equal the number of rows of \(B\), unless one is a scalar.
. * Array multiplication. A. *B is the entry-by-entry product of A and B. A and \(B\) must have the same dimensions, unless one is scalar.

1 Matrix left division. \(X=A \backslash B\) solves the symbolic linear equations \(A * X=B\). Note that \(A \backslash B\) is roughly equivalent to inv (A)*B. Warning messages are produced if \(X\) does not exist or is not unique. Rectangular matrices \(A\) are allowed, but the equations must be consistent; a least squares solution is not computed.
. \(\ \quad\) Array left division. \(A . \backslash B\) is the matrix with entries \(B(i, j) / A(i, j) . A\) and \(B\) must have the same dimensions, unless one is scalar.
/ Matrix right division. \(\mathrm{X}=\mathrm{B} / \mathrm{A}\) solves the symbolic linear equation \(\mathrm{X} * \mathrm{~A}=\mathrm{B}\). Note that \(B / A\) is the same as (A. ' \(\backslash \mathrm{B}\). ' \(^{\prime}\)). '. Warning messages are produced if \(X\) does not exist or is not unique. Rectangular matrices A are allowed, but the equations must be consistent; a least squares solution is not computed.
./ Array right division. \(A . / B\) is the matrix with entries \(A(i, j) / B(i, j) . A\) and \(B\) must have the same dimensions, unless one is scalar.

\section*{Arithmetic Operations}
^ Matrix power. \(X^{\wedge} P\) raises the square matrix \(X\) to the integer power P. If \(X\) is a scalar and \(P\) is a square matrix, \(X^{\wedge} P\) raises \(X\) to the matrix power \(P\), using eigenvalues and eigenvectors. \(X^{\wedge} P\), where \(X\) and \(P\) are both matrices, is an error.

Array power. \(A . \wedge^{\wedge}\) is the matrix with entries \(A(i, j)^{\wedge} B(i, j)\). \(A\) and \(B\) must have the same dimensions, unless one is scalar.

Matrix Hermition transpose. If \(A\) is complex, \(A^{\prime}\) is the complex conjugate transpose.
' Array transpose. A. ' is the real transpose of A. A. ' does not conjugate complex entries.

\section*{Examples The following statements}
```

syms a b c d;
A = [a b; c d];
A*A/A
A*A-A^2

```
return
 [\(\mathrm{a}, \mathrm{b}\)]
 [c, d]
 [0, 0]
 [0, 0]

The following statements
```

syms a11 a12 a21 a22 b1 b2;
A = [a11 a12; a21 a22];
B = [b1 b2];
X = B/A;
x1 = X(1)
x2 = X(2)
return
x1 =
(-a21*b2+b1*a22)/(a11*a22-a12*a21)

```

\section*{Arithmetic Operations}
x2 =
(a11*b2-a12*b1)/(a11*a22-a12*a21)
See Also null, solve

Purpose

\section*{Syntax \\ ccode (s)}

Description
Examples
The statements

\section*{syms \(x\)}
\(f=\operatorname{taylor}(\log (1+x))\); ccode(f)
return
```

t0 = x-x*x/2.0+x*x*x/3.0- x* x* x*x/4.0+x*x*x*x*x/5.0;

```

The statements
H = sym(hilb(3));
ccode(H)
return
\[
\begin{array}{lll}
H[0][0]=1.0 ; & H[0][1]=1.0 / 2.0 ; & H[0][2]=1.0 / 3.0 ; \\
H[1][0]=1.0 / 2.0 ; & H[1][1]=1.0 / 3.0 ; & H[1][2]=1.0 / 4.0 ; \\
H[2][0]=1.0 / 3.0 ; & H[2][1]=1.0 / 4.0 ; & H[2][2]=1.0 / 5.0 ;
\end{array}
\]

See Also fortran, latex, pretty

Purpose Round symbolic matrix toward positive infinity

\section*{Syntax \\ ceil(x)}

Description
Example

See Also

\section*{Purpose}

Coefficients of a multivariate polynomial

\section*{Syntax \\ coeffs(p)}

Description
\(C=\) coeffs \((P)\) returns the coefficients of the polynomial \(P\) with respect to all the indeterminates of \(P\).
\(C=\operatorname{coeffs}(P, X)\) returns the coefficients of the polynomial \(P\) with respect to \(X\).
\([C, T]=\operatorname{coeffs}(P, X)\) also returns an expression sequence of the terms of \(P\). There is a one-to-one correspondence between the coefficients and the terms of P.

\section*{Examples}
```

syms x
t = 2 + (3 + 4* log(x))^2 - 5* log(x);
coeffs(expand(t)) = [ 11, 19, 16]
syms a b c x
y = a + b*sin(x) + c*sin(2*x)
coeffs(y,sin(x)) = [a+c*sin(2*x), b]
coeffs(expand(y),sin(x)) = [a, b+2*c*cos(x)]
syms x y
z = 3*x^2*y^2 + 5*x*y^3
coeffs(z) = [3, 5]
coeffs(z,x) = [5*y^3, 3*y^2]
[c,t] = coeffs(z,y) returns c = [3*x^2, 5*x], t = [y^2, y^3]

```

See Also
sym2poly

\section*{collect}

\section*{Purpose Collect coefficients}
Syntax \(\quad\)\begin{tabular}{rl}
\(R\) & \(=\operatorname{collect}(S)\) \\
\(R\) & \(=\operatorname{collect}(S, v)\)
\end{tabular}

Description

\section*{Examples}

For each polynomial in the array \(S\) of polynomials, collect(S) collects terms containing the variable \(v\) (or \(x\), if \(v\) is not specified). The result is an array containing the collected polynomials.

The following statements
```

    syms x y;
    R1 = collect((exp(x)+x)*(x+2))
    R2 = collect(( }x+y\mp@subsup{)}{}{*}(\mp@subsup{x}{}{\wedge}2+y^2+1), y
    R3 = collect([( }x+1\mp@subsup{)}{}{*}(y+1),x+y]
    return
R1 =
x^2+(exp(x)+2)*x+2* exp(x)
R2 =
y^3+x*y^2+(x^2+1)*y+x*(x^2+1)
R3 =
[(y+1)*x+y+1, x+y]

```
 See Also
 expand, factor, simple, simplify, syms

Purpose

\section*{Syntax}

Description

\section*{Examples}

The statements
\[
\begin{aligned}
& A=\operatorname{sym}([2,0 ; 3,4 ; 0,5]) \\
& B=\operatorname{colspace}(A)
\end{aligned}
\]
return
A \(=\)
[2,0]
[3,4]
[0,5]
B =
[1, 0]
[0, 1]
\([-15 / 8,5 / 4]\)
See Also null, orth

\section*{Purpose Functional composition}
```

Syntax compose(f,g)
compose(f,g,z)
compose(f,g,x,z)
compose(f,g,x,y,z)

```

Description

\section*{Examples}

See Also
compose \((f, g)\) returns \(f(g(y))\) where \(f=f(x)\) and \(g=g(y)\). Here \(x\) is the symbolic variable of \(f\) as defined by findsym and \(y\) is the symbolic variable of \(g\) as defined by findsym.
compose \((f, g, z)\) returns \(f(g(z))\) where \(f=f(x), g=g(y)\), and \(x\) and \(y\) are the symbolic variables of \(f\) and \(g\) as defined by findsym.
compose (\(f, g, x, z\)) returns \(f(g(z))\) and makes \(x\) the independent variable for \(f\). That is, if \(f=\cos (x / t)\), then compose \((f, g, x, z)\) returns \(\cos (g(z) / t)\) whereas compose(\(f, g, t, z\)) returns \(\cos (x / g(z))\).
compose (\(f, g, x, y, z\)) returns \(f(g(z))\) and makes \(x\) the independent variable for \(f\) and \(y\) the independent variable for \(g\). For \(f=\cos (x / t)\) and \(g=\sin (y / u)\), compose \((f, g, x, y, z)\) returns \(\cos (\sin (z / u) / t)\) whereas compose(f,g, \(x, u, z)\) returns \(\cos (\sin (y / z) / t)\).

Suppose
```

syms x y z t u;
f = 1/(1 + x^2); g = sin(y); h = x^t; p = exp(-y/u);

```

Then
```

compose(f,g) -> 1/(1+\operatorname{sin}(y)^2)
compose(f,g,t) -> 1/(1+sin(t)^2)
compose(h,g,x,z) -> sin(z)^t
compose(h,g,t,z) -> x^sin(z)
compose(h,p,x,y,z) -> exp(-z/u)^t
compose(h,p,t,u,z) -> x^exp(-y/z)

```
finverse, subs, syms

Purpose Symbolic conjugate

\section*{Syntax \(\operatorname{conj}(X)\)}

Description \(\operatorname{con} j(X)\) is the complex conjugate of \(X\).
For a complex \(X\), conj \((X)=\operatorname{real}(X)-i * i m a g(X)\).
See Also
real, imag
Purpose Cosine integral function

\section*{Syntax \(\quad Y=\operatorname{cosint}(X)\)}

Description

\section*{Examples}
```

cosint(7.2) returns 0.0960.
cosint([0:0.1:1]) returns
Columns 1 through 7
Inf -1.7279 -1.0422 -0.6492 -0.3788 -0.1778 -0.0223
Columns 8 through 11

```
 \(\begin{array}{llll}0.1005 & 0.1983 & 0.2761 & 0.3374\end{array}\)
The statements
 syms x;
 \(\mathrm{f}=\operatorname{cosint}(\mathrm{x})\);
 diff(f)
return
 \(\cos (x) / x\)
See Also sinint

Purpose

\section*{Syntax}

Description

\section*{Examples}

The statements
syms a b c d;
\(\operatorname{det}([a, b ; c, d])\)
return
a*d - b*c
The statements
\[
\begin{aligned}
& A=\operatorname{sym}\left(\left[\begin{array}{lll}
2 / 3 & 1 / 3 ; 1 & 1
\end{array}\right]\right) \\
& r=\operatorname{det}(A)
\end{aligned}
\]
return
\[
A=
\]
[2/3, 1/3]
[1, 1]
\(r=1 / 3\)
Purpose Create or extract symbolic diagonals

\section*{Syntax \\ \(\operatorname{diag}(A, k)\) diag(A)}
\(\operatorname{diag}(A, k)\), where \(A\) is a row or column vector with \(n\) components, returns a square symbolic matrix of order \(n+a b s(k)\), with the elements of \(A\) on the \(k\)-th diagonal. \(k=0\) signifies the main diagonal; \(k>0\), the \(k\)-th diagonal above the main diagonal; \(k<0\), the \(k\)-th diagonal below the main diagonal.
\(\operatorname{diag}(A, k)\), where \(A\) is a square symbolic matrix, returns a column vector formed from the elements of the \(k\)-th diagonal of \(A\).
diag(A), where \(A\) is a vector with \(n\) components, returns an \(n\)-by-n diagonal matrix having \(A\) as its main diagonal.
diag (A), where A is a square symbolic matrix, returns the main diagonal of A.

\section*{Examples}

Suppose
\[
v=\left[\begin{array}{lll}
a & b & c
\end{array}\right]
\]

Then both diag(v) and diag(v,0) return
```

    [ a, 0, 0 ]
    [ 0, b, 0 ]
    [ 0, 0, c ]
    diag(v,-2) returns
[ 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0]
[ a, 0, 0, 0, 0]
[ 0, b, 0, 0, 0]
[ 0, 0, c, 0, 0]

```

Suppose
```

$A=$
[ a, b, c ]
[ 1, 2, 3 ]
[ x, y, z ]

```

\title{
diag(A) returns \\ [a] \\ [2] \\ [z] \\ diag(A,1) returns \\ [b] \\ [3]
}

See Also
tril, triu

\section*{Purpose Differentiate}
Syntax \begin{tabular}{ll}
\(\operatorname{diff}(S, ' v ')\) \\
& \(\operatorname{diff}(S, n)\) \\
& \(\operatorname{diff}\left(S, v^{\prime}, n\right)\)
\end{tabular}

Description

\section*{Examples}

Assume
syms x t
Then
\(\operatorname{diff}\left(\sin \left(x^{\wedge} 2\right)\right)\)
returns
\(2 * \cos \left(x^{\wedge} 2\right) * x\)
and
diff(t^6,6)
returns
720
See Also int, jacobian, findsym

\section*{Purpose \\ Set variable precision accuracy}

\section*{Syntax}

Description

Examples
If
\(z=1.0 e-16\)
x \(=1.0 \mathrm{e}+2\)
digits(14)
then
\[
y=\operatorname{vpa}\left(x^{*} z+1\right)
\]
uses 14 -digit decimal arithmetic and returns
```

y =
1.0000000000000

```

Whereas
digits(15)
\(y=\operatorname{vpa}\left(x^{*} z+1\right)\)
used 15-digit decimal arithmetic and returns
\(y=\)
1.00000000000001

See Also
double, vpa

Purpose Compute the Dirac delta function

\section*{Syntax \\ dirac (X)}

Description

\section*{Example}
```

syms x a
a = 5;
int(dirac(x-a)*sin(x),-inf, inf)
ans =
sin(5)

```

See Also heaviside

Purpose

\section*{Syntax \\ R = double(S)}

Description

\section*{Examples} entries.

Convert symbolic matrix to MATLAB numeric form
double(S) converts the symbolic object \(S\) to a numeric object. If \(S\) is a symbolic constant or constant expression, double returns a double-precision floating-point number representing the value of \(S\). If \(S\) is a symbolic matrix whose entries are constants or constant expressions, double returns a matrix of double precision floating-point numbers representing the values of S's
double(sym('(1+sqrt(5))/2')) returns 1.6180 .
The following statements
```

    a = sym(2*sqrt(2));
    b = sym((1-sqrt(3))^2);
    T = [a, b]
    double(T)
    return
ans =
2.8284 0.5359

```
See Also
sym, vpa

\section*{Purpose Symbolic solution of ordinary differential equations}
```

Syntax r = dsolve('eq1,eq2,...', 'cond1,cond2,...', 'v')
r = dsolve('eq1','eq2',...,'cond1','cond2',...,'v')

```

\section*{Description}
dsolve('eq1,eq2,...', 'cond1,cond2,...', 'v') symbolically solves the ordinary differential equation(s) specified by eq1, eq2, ... using \(v\) as the independent variable and the boundary and/or initial condition(s) specified by cond1, cond2,

The default independent variable is t .
The letter D denotes differentiation with respect to the independent variable; with the primary default, this is \(\mathrm{d} / \mathrm{dx}\). A D followed by a digit denotes repeated differentiation. For example, D2 is d2/dx2. Any character immediately following a differentiation operator is a dependent variable. For example, D3y denotes the third derivative of \(y(x)\) or \(y(t)\).

Initial/boundary conditions are specified with equations like \(y(a)=b\) or \(D y(a)=b\), where \(y\) is a dependent variable and \(a\) and \(b\) are constants. If the number of initial conditions specified is less than the number of dependent variables, the resulting solutions will contain the arbitrary constants C1, C2,....

You can also input each equation and/or initial condition as a separate symbolic equation. dsolve accepts up to 12 input arguments.

Three different types of output are possible.
- For one equation and one output, dsolve returns the resulting solution with multiple solutions to a nonlinear equation in a symbolic vector.
- For several equations and an equal number of outputs, dsolve sorts the results in lexicographic order and assigns them to the outputs.
- For several equations and a single output, dsolve returns a structure containing the solutions.

If dsolve cannot find a closed-form (explicit) solution, it attempts to find an implicit solution. When dsolve returns an implicit solution, it issues a warning. If dsolve cannot find either an explicit or an implicit solution, then it issues a warning and returns the empty sym. In such a case, you can find a numeric solution, using the MATLAB ode23 or ode45 functions. In some cases
involving nonlinear equations, the output will be an equivalent lower order differential equation or an integral.

With no output arguments, dsolve returns a list of solutions.

\section*{Examples}
```

dsolve('Dy = a*x') returns
C1*exp(a*t)
dsolve('Df = f + sin(t)') returns
-1/2*}\operatorname{cos}(t)-1/2*\operatorname{sin}(t)+\operatorname{exp}(t)*C
dsolve('(Dy)^2 + y^2 = 1','s') returns
[ -1]
[ 1]
[ sin(s-C1)]
[ - sin(s-C1)]
dsolve('Dy = a*y', 'y(0) = b') returns
b*exp(a*t)
dsolve('D2y = -a^2*y', 'y(0) = 1', 'Dy(pi/a) = 0') returns
cos(a*t)
dsolve('Dx = y', 'Dy = -x') returns
x: [1x1 sym]
y: [1x1 sym]
y = dsolve('(Dy)^2 + y^2 = 1','y(0) = 0') returns
y =
sin(t)
-sin(t)

```

Diagnostics
If dsolve cannot find an analytic solution for an equation, it prints the warning Warning: explicit solution could not be found and return an empty sym object.

\section*{dsolve}

\section*{See Also}
syms

Purpose
Symbolic matrix eigenvalues and eigenvectors

\section*{Syntax}
```

lambda = eig(A)
[V,D] = eig(A)
[V,D,P] = eig(A)
lambda = eig(vpa(A))
[V,D] = eig(vpa(A))

```

\section*{Description}

\section*{Examples}

The statements
```

    R = sym(gallery('rosser'));
    eig(R)
    return
ans =
[ 0]
[ 1020]
[ 510+100*26^(1/2)]
[ 510-100*26^(1/2)]
[ 10*10405^(1/2)]
[ -10*10405^(1/2)]
[ 1000]
[ 1000]

```
```

eig(vpa(R)) returns
ans =
[ -1020.0490184299968238463137913055]
[ .565129999999999999999999999999800e-28]
[ .98048640721516997177589097485157e-1]
[ 1000.0000000000000000000000000002]
[ 1000.0000000000000000000000000003]
[ 1019.9019513592784830028224109024]
[ 1020.00000000000000000000000000003]
[ 1020.0490184299968238463137913055]

```

The statements
```

A = sym(gallery(5));
[v,lambda] = eig(A)

```
return
v =
[0]
[21/256]
[-71/128]
[973/256]
[1]
lambda =
[0, 0, 0, 0, 0]
[0, 0, 0, 0, 0]
[0, 0, 0, 0, 0]
[0, 0, 0, 0, 0]
[0, 0, 0, 0, 0]

\section*{See Also}
jordan, poly, svd, vpa

Purpose

\section*{Syntax}

Description

\section*{Examples}

The statements

\section*{syms t;}
```

A = [0 1; -1 0];

```
expm(t*A)
return
\[
\begin{array}{lll}
{[} & \cos (t), & \sin (t)] \\
{[} & -\sin (t), & \cos (t)]
\end{array}
\]

\section*{Purpose Symbolic expansion}

\section*{Syntax \\ \(R=\) expand(S)}

Description

\section*{Examples}

See Also
expand (S) writes each element of a symbolic expression \(S\) as a product of its factors. expand is most often used only with polynomials, but also expands trigonometric, exponential, and logarithmic functions.
```

expand((x-2)*(x-4)) returns
$x^{\wedge} 2-6 * x+8$
expand $(\cos (x+y))$ returns
$\cos (x) * \cos (y)-\sin (x) * \sin (y)$
expand $\left(\exp \left((a+b)^{\wedge} 2\right)\right)$ returns
$\exp \left(a^{\wedge} 2\right) * \exp \left(a^{*} b\right)^{\wedge} 2^{*} \exp \left(b^{\wedge} 2\right)$
expand([sin(2*t), $\left.\left.\cos \left(2^{*} t\right)\right]\right)$ returns
[2* $\left.\sin (\mathrm{t}) * \cos (\mathrm{t}), 2^{*} \cos (\mathrm{t})^{\wedge} 2-1\right]$

```
collect, factor, horner, simple, simplify, syms

Purpose
Syntax \(\quad\)\begin{tabular}{ll}
ezcontour (f) \\
& ezcontour (f, domain) \\
& ezcontour \((\ldots, n)\)
\end{tabular}

\section*{Examples}

The following mathematical expression defines a function of two variables, \(x\) and \(y\).
\[
f(x, y)=3(1-x)^{2} e^{-x^{2}-(y+1)^{2}}-10\left(\frac{x}{5}-x^{3}-y^{5}\right) e^{-x^{2}-y^{2}}-\frac{1}{3} e^{-(x+1)^{2}-y^{2}}
\]
ezcontour requires a sym argument that expresses this function using MATLAB syntax to represent exponents, natural logs, etc. This function is represented by the symbolic expression
```

syms x y
f = 3* (1-x)^2* exp(-(x^2)-(y+1)^2) ...
- 10*(x/5 - x^3 - y^5)*exp(-x^2-y^2) ...
- 1/3*exp(-(x+1)^2 - y^2);

```

For convenience, this expression is written on three lines.
Pass the sym \(f\) to ezcontour along with a domain ranging from -3 to 3 and specify a computational grid of 49-by-49.
```

ezcontour(f,[-3,3],49)

```


In this particular case, the title is too long to fit at the top of the graph so MATLAB abbreviates the string.

See Also
contour, ezcontourf, ezmesh, ezmeshc, ezplot, ezplot3, ezpolar, ezsurf, ezsurfc

Purpose
Syntax \(\quad \begin{aligned} & \text { ezcontourf(} f \text {) } \\ & \text { ezcontourf(} f, \text { domain })\end{aligned}\)

Description

Examples
Filled contour plotter
```

ezcontourf(f)
ezcontourf(...,n)

``` these points are not plotted. \(<u<1,3<v<6\). default value for n is 60 .
ezcontour (f) plots the contour lines of \(f(x, y)\), where f is a sym that represents a mathematical function of two variables, such as \(x\) and \(y\).

The function \(f\) is plotted over the default domain \(-2 \pi<x<2 \pi,-2 \pi<y<2 \pi\). MATLAB chooses the computational grid according to the amount of variation that occurs; if the function \(f\) is not defined (singular) for points on the grid, then
ezcontour (\(f\), domain) plots \(f(x, y)\) over the specified domain. domain can be either a 4 -by- 1 vector [xmin, xmax, ymin, ymax] or a 2 -by-1 vector [min, max] (where, min \(<\mathrm{x}<\max , \min <\mathrm{y}<\max\)).

If \(f\) is a function of the variables \(u\) and \(v\) (rather than \(x\) and \(y\)), then the domain endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus, ezcontourf (\(\left.u^{\wedge} 2-v^{\wedge} 3,[0,1],[3,6]\right)\) plots the contour lines for \(u^{2}-v^{3}\) over 0
ezcontourf (..., n) plots \(f\) over the default domain using an n-by-n grid. The
ezcontourf automatically adds a title and axis labels.
The following mathematical expression defines a function of two variables, \(x\) and \(y\).
\[
f(x, y)=3(1-x)^{2} e^{-x^{2}-(y+1)^{2}}-10\left(\frac{x}{5}-x^{3}-y^{5}\right) e^{-x^{2}-y^{2}}-\frac{1}{3} e^{-(x+1)^{2}-y^{2}}
\]
ezcontourf requires a sym argument that expresses this function using MATLAB syntax to represent exponents, natural logs, etc. This function is represented by the symbolic expression
```

syms x y
f = 3*(1-x)^2* exp(-(x^2)-(y+1)^2) ...
- 10*(x/5 - x^3 - y^5)*exp(-x^2-y^2) ...
- 1/3*exp(-(x+1)^2 - y^2);

```

For convenience, this expression is written on three lines.
Pass the sym \(f\) to ezcontourf along with a domain ranging from -3 to 3 and specify a grid of 49 -by- 49 .
ezcontourf(f, [-3,3],49)

In this particular case, the title is too long to fit at the top of the graph so MATLAB abbreviates the string.

See Also
contourf, ezcontour, ezmesh, ezmeshc, ezplot, ezplot3, ezpolar, ezsurf, ezsurfc

Purpose
3-D mesh plotter

\author{
Syntax \\ \section*{Description}
}
```

ezmesh(f)
ezmesh(f,domain)
ezmesh(x,y,z)
ezmesh( $x, y, z,[s m i n, s m a x, t m i n, t m a x])$ or ezmesh ( $x, y, z,[m i n, m a x])$
ezmesh(..., n)
ezmesh(...,'circ')

```

Examples
ezmesh (f) creates a graph of \(f(x, y)\), where f is a symbolic expression that represents a mathematical function of two variables, such as \(x\) and \(y\).

The function \(f\) is plotted over the default domain \(-2 \pi<x<2 \pi,-2 \pi<y<2 \pi\). MATLAB chooses the computational grid according to the amount of variation that occurs; if the function \(f\) is not defined (singular) for points on the grid, then these points are not plotted.
ezmesh (f, domain) plots \(f\) over the specified domain. domain can be either a 4 -by- 1 vector [xmin, xmax, ymin, ymax] or a 2 -by- 1 vector [min, max] (where, \(\min <x<\max , \min <y<\max\)).

If \(f\) is a function of the variables \(u\) and \(v\) (rather than \(x\) and \(y\)), then the domain endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus, ezmesh (u^2 - v^3, [0,1], [3,6]) plots \(u^{2}-v^{3}\) over \(0<u<1,3<v<6\).
ezmesh (\(\mathrm{x}, \mathrm{y}, \mathrm{z}\)) plots the parametric surface \(x=x(s, t), y=y(s, t)\), and \(z=z(s, t)\) over the square \(-2 \pi<s<2 \pi,-2 \pi<t<2 \pi\).
ezmesh (\(x, y, z,[\) smin, smax, tmin, tmax]) or ezmesh (\(x, y, z,[m i n, m a x])\) plots the parametric surface using the specified domain.
ezmesh (..., n) plots \(f\) over the default domain using an n-by-n grid. The default value for n is 60 .
ezmesh(...,'circ') plots \(f\) over a disk centered on the domain
This example visualizes the function,
\[
f(x, y)=x e^{-x^{2}-y^{2}}
\]
with a mesh plot drawn on a 40-by- 40 grid. The mesh lines are set to a uniform blue color by setting the colormap to a single color.
```

syms x y
ezmesh(x*exp(-x^2-y^2), [-2.5,2.5],40)
colormap([0 0 1])

```


See Also
ezcontour, ezcontourf, ezmeshc, ezplot, ezplot3, ezpolar, ezsurf, ezsurfc, mesh

Purpose
Combined mesh/contour plotter
Syntax
Description

\section*{Examples}

Create a mesh/contour graph of the expression,
\[
f(x, y)=\frac{y}{1+x^{2}+y^{2}}
\]
over the domain \(-5<x<5,-2^{*} \mathrm{pi}<y<2^{*} \mathrm{pi}\).
```

syms x y
ezmeshc(y/(1 + x^2 + y^2),[-5,5,-2*pi,2*pi])

```

Use the mouse to rotate the axes to better observe the contour lines (this picture uses a view of azimuth \(=-65\) and elevation \(=26\)).

See Also
ezcontour, ezcontourf, ezmesh, ezplot, ezplot3, ezpolar, ezsurf, ezsurfc, meshc

\section*{Purpose}

Function plotter

\section*{Syntax}

\section*{Description}

\section*{Algorithm} window labeled fign. ymin \(<y<y m a x\). \(-2<v<3\).
```

ezplot(f)
ezplot(f,[min,max])
ezplot(f,[xmin,xmax,ymin,ymax])
ezplot(x,y)
ezplot(x,y,[tmin,tmax])
ezplot(...,figure)

```
ezplot (f) plots the expression \(f=f(x)\) over the default domain \(-2 \pi<x<2 \pi\).
ezplot (\(\mathrm{f},[\mathrm{xmin} \mathrm{xmax}]\)) plots \(f=f(x)\) over the specified domain. It opens and displays the result in a window labeled Figure No. 1. If any plot windows are already open, ezplot displays the result in the highest numbered window.
ezplot (f, [xmin xmax],fign) opens (if necessary) and displays the plot in the

For implicitly defined functions, \(f=f(x, y)\).
ezplot(f) plots \(f(x, y)=0\) over the default domain \(-2 \pi<x<2 \pi,-2 \pi<y<2 \pi\).
ezplot(f,[xmin, xmax, ymin, ymax]) plots \(f(x, y)=0\) over xmin \(<x<x\) max and
ezplot(f,[min, max]) plots \(f(x, y)=0\) over \(\min <x<\max\) and min \(<y<\max\).
If \(f\) is a function of the variables \(u\) and \(v\) (rather than \(x\) and \(y\)), then the domain endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus, ezplot (u^2 - v^2 - 1, [\(-3,2,-2,3]\)) plots \(u^{2}-v^{2}-1=0\) over \(-3<u<2\),
ezplot (\(\mathrm{x}, \mathrm{y}\)) plots the parametrically defined planar curve \(x=x(t)\) and \(y=y(t)\) over the default domain \(0<t<2 \pi\).
ezplot (\(\mathrm{x}, \mathrm{y},[\mathrm{tmin}, \operatorname{tmax}]\)) plots \(x=x(t)\) and \(y=y(t)\) over tmin \(<t<\) tmax.
ezplot(...,figure) plots the given function over the specified domain in the figure window identified by the handle figure.

If you do not specify a plot range, ezplot samples the function between \(-2 * \mathrm{pi}\) and \(2 * \mathrm{pi}\) and selects a subinterval where the variation is significant as the plot
domain. For the range, ezplot omits extreme values associated with singularities.

\section*{Examples}

This example plots the implicitly defined function,
\[
x^{2}-y^{4}=0
\]
over the domain \([-2 \pi, 2 \pi]\)
syms \(x\) y
ezplot (\(\left.x^{\wedge} 2-y^{\wedge} 4\right)\)

The following statements
syms x
ezplot(erf(x))
grid
plot a graph of the error function.

See Also
ezcontour, ezcontourf, ezmesh, ezmeshc, ezplot3, ezpolar, ezsurf, ezsurfc, plot

Purpose 3-D parametric curve plotter
```

Syntax ezplot3(x,y,z)
ezplot3(x,y,z,[tmin,tmax])
ezplot3(...,'animate')

```

Description ezplot3 \((\mathrm{x}, \mathrm{y}, \mathrm{z})\) plots the spatial curve \(x=x(t), y=y(t)\), and \(z=z(t)\) over the default domain \(0<t<2 \pi\).
ezplot3(x, \(\mathrm{y}, \mathrm{z},[\mathrm{tmin}, \mathrm{tmax}])\) plots the curve \(x=x(t), y=y(t)\), and \(z=z(t)\) over the domain tmin \(<\mathrm{t}<\mathrm{tmax}\).
ezplot3(...,'animate') produces an animated trace of the spatial curve.
Examples
This example plots the parametric curve, \(x=\sin t, \quad y=\cos t, \quad z=t\)
over the domain [\(0,6 \pi\)]
syms t ; ezplot3(sin(t), cos(t), \(\mathrm{t},[0,6 * \mathrm{pi}])\)
\(x=\sin (t), y=\cos (t), z=t\)

\section*{See Also}
ezcontour, ezcontourf, ezmesh, ezmeshc, ezplot, ezpolar, ezsurf, ezsurfc, plot3

\section*{Purpose Polar coordinate plotter}
Syntax \(\quad\)\begin{tabular}{ll}
ezpolar \((f)\) \\
& ezpolar \((f,[a, b])\)
\end{tabular}

Description
ezpolar(f) plots the polar curve rho \(=f(\) (heta \()\) over the default domain \(0<\) thet \(\alpha<2 \pi\).
ezpolar(f, [a, b]) plots for \(\mathrm{a}<\) theta \(<\mathrm{b}\).

\section*{Example}

This example creates a polar plot of the function,
\[
1+\cos (t)
\]
over the domain \([0,2 \pi]\)
syms t
ezpolar(1+cos(t))

Purpose
Syntax

Purpose

\section*{Examples}

3-D colored surface plotter
ezsurf(f)
ezsurf(f,domain)
ezsurf(\(x, y, z\))
ezsurf(\(x, y, z,[s m i n, s m a x, t m i n, t m a x])\) or ezsurf \((x, y, z,[m i n, m a x])\)
ezsurf(...,n)
ezsurf(...,'circ')
ezsurf(\(f\)) creates a graph of \(f(x, y)\), where \(f\) is a symbolic expression that represents a mathematical function of two variables, such as \(x\) and \(y\).

The function \(f\) is plotted over the default domain \(-2 \pi<x<2 \pi,-2 \pi<y<2 \pi\). MATLAB chooses the computational grid according to the amount of variation that occurs; if the function \(f\) is not defined (singular) for points on the grid, then these points are not plotted.
ezsurf(f,domain) plots \(f\) over the specified domain. domain can be either a 4 -by- 1 vector [xmin, xmax, ymin, ymax] or a 2 -by- 1 vector [min, max] (where, \(\min <x<\max , \min <y<\max\)).

If \(f\) is a function of the variables \(u\) and \(v\) (rather than \(x\) and \(y\)), then the domain endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus, ezsurf(\(\left.u^{\wedge} 2-v^{\wedge} 3,[0,1],[3,6]\right)\) plots \(u^{2}-\mathrm{v}^{3}\) over \(0<u<1,3<v<6\).
\(\operatorname{ezsurf}(\mathrm{x}, \mathrm{y}, \mathrm{z})\) plots the parametric surface \(x=x(s, t), y=y(s, t)\), and \(z=z(s, t)\) over the square \(-2 \pi<s<2 \pi,-2 \pi<t<2 \pi\).
ezsurf \((x, y, z,[s m i n, s m a x, t m i n, t m a x])\) or ezsurf \((x, y, z,[m i n, m a x])\) plots the parametric surface using the specified domain.
ezsurf(..., n) plots \(f\) over the default domain using an n-by-n grid. The default value for n is 60 .
ezsurf(...,'circ') plots \(f\) over a disk centered on the domain
ezsurf does not graph points where the mathematical function is not defined (these data points are set to NaNs, which MATLAB does not plot). This example illustrates this filtering of singularities/discontinuous points by graphing the function,
\[
f(x, y)=\operatorname{real}(\operatorname{atan}(x+i y))
\]
over the default domain \(-2 \pi<x<2 \pi,-2 \pi<y<2 \pi\)
syms x y
syms x y
ezsurf(real(atan(x+i*y)))
ezsurf(real(atan(x+i*y)))
\(1 / 2 \operatorname{atan}(x+i y)+1 / 2 \operatorname{conj}(\operatorname{atan}(x+i y))\)

Note also that ezsurf creates graphs that have axis labels, a title, and extend to the axis limits.

See Also ezcontour, ezcontourf, ezmesh, ezmeshc, ezplot, ezpolar, ezsurfc, surf

Purpose
Combined surface/contour plotter
ezsurfc(f)
ezsurfc(f,domain)
ezsurfc(\(x, y, z\))
ezsurfc(x,y,z,[smin,smax,tmin,tmax]) or ezsurfc(x,y,z,[min,max])
ezsurfc(..., n)
ezsurfc(...,'circ')
ezsurfc (f) creates a graph of \(f(x, y)\), where f is a symbolic expression that represents a mathematical function of two variables, such as \(x\) and \(y\).

The function \(f\) is plotted over the default domain \(-2 \pi<x<2 \pi,-2 \pi<y<2 \pi\). MATLAB chooses the computational grid according to the amount of variation that occurs; if the function \(f\) is not defined (singular) for points on the grid, then these points are not plotted.
ezsurfc(f,domain) plots \(f\) over the specified domain. domain can be either a 4 -by- 1 vector [xmin, xmax, ymin, ymax] or a 2 -by- 1 vector [min, max] (where, \(\min <x<\max , \min <y<\max\)).

If \(f\) is a function of the variables \(u\) and \(v\) (rather than \(x\) and \(y\)), then the domain endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus, ezsurfc (u^2 - \(\left.\mathrm{v}^{\wedge} 3,[0,1],[3,6]\right)\) plots \(u^{2}-v^{3}\) over \(0<u<1,3<v<6\).
ezsurfc (\(\mathrm{x}, \mathrm{y}, \mathrm{z}\)) plots the parametric surface \(x=x(s, t), y=y(s, t)\), and \(z=z(s, t)\) over the square \(-2 \pi<s<2 \pi,-2 \pi<t<2 \pi\).
ezsurfc (\(x, y, z,[\) smin, smax, tmin, tmax]) or ezsurfc (\(x, y, z,[m i n, m a x])\) plots the parametric surface using the specified domain.
ezsurfc (..., n) plots \(f\) over the default domain using an n-by-n grid. The default value for n is 60 .
ezsurfc(...,'circ') plots \(f\) over a disk centered on the domain.

\section*{Examples}
\[
f(x, y)=\frac{y}{1+x^{2}+y^{2}}
\]
over the domain \(-5<x<5,-2^{*} \mathrm{pi}<y<2^{*}\) pi, with a computational grid of size 35 -by- 35
```

syms x y
ezsurfc(y/(1 + x^2 + y^2),[-5,5,-2*pi,2*pi],35)

```

Use the mouse to rotate the axes to better observe the contour lines (this picture uses a view of azimuth \(=-65\) and elevation \(=26\)).

y

See Also
ezcontour, ezcontourf, ezmesh, ezmeshc, ezplot, ezpolar, ezsurf, surfc

\section*{Purpose}

Factorization

\section*{Syntax \\ factor (X)}

Description

Examples
factor (\(x^{\wedge} 3-y^{\wedge} 3\)) returns
\((x-y) *\left(x^{\wedge} 2+x^{*} y+y^{\wedge} 2\right)\)
factor ([a^2-b^2, \(\left.\left.a^{\wedge} 3+b^{\wedge} 3\right]\right)\) returns
\([(a-b) *(a+b),(a+b) *(a \wedge 2-a * b+b \wedge 2)]\)
factor(sym('12345678901234567890')) returns
\((2) *(3) \wedge 2^{*}(5) *(101) *(3803) *(3607) *(27961) *(3541)\)
See Also
collect, expand, horner, simplify, simple

\section*{findsym}

Purpose Finds the variables in a symbolic expression or matrix
Syntax
\(r=\) findsym(S)
\(r=\) findsym(S, n)

Description
For a symbolic expression or matrix S, findsym(S) returns all symbolic variables in \(S\) in lexicographical order, separated by commas. If S does not contain any variables, findsym returns an empty string.
findsym(\(S, n\)) returns the \(n\) variables alphabetically closest to \(x\). For single-letter variables that are equally close to \(x\) in the alphabet, findsym treats the letter that comes later in the alphabet as being "closer."
findsym \((S, 1)\) returns the variable closest to \(x\). This is the default symbolic variable, when none is specified, for the subs and diff commands.

Note A symbolic variable is an alphanumeric name, other than i or \(j\), that begins with an alphabetic character.

\section*{Examples}
```

syms a x y z t
findsym(sin(pi*t))
ans = t
findsym(x+i*y-j*z)
ans = x, y, z
findsym(a+y,1)
returns y.

```

\section*{See Also}
compose, diff, int, limit, taylor

\section*{Purpose}

Functional inverse
Syntax \(\quad\)\begin{tabular}{rl}
\(g\) & \(=\) finverse \((f)\) \\
\(g\) & \(=\operatorname{finverse}(f, v)\)
\end{tabular}

\section*{Examples}

See Also
\(g=\) finverse(f) returns the functional inverse of \(f . f\) is a scalar sym representing a function of one symbolic variable, say \(x\). Then \(g\) is a scalar sym that satisfies \(g(f(x))=x\). That is, finverse \((f)\) returns \(f^{-1}\), provided \(f^{-1}\) exists.
\(g\) = finverse(\(f, v\)) uses the symbolic variable \(v\), where \(v\) is a sym, as the independent variable. Then \(g\) is a scalar sym that satisfies \(g(f(v))=v\). Use this form when \(f\) contains more than one symbolic variable.
finverse(1/tan(x)) returns
atan(1/x)
finverse(exp(u-2*v), u) returns
2* \(\mathrm{v}+\log (\mathrm{u})\)
compose, syms

\section*{fix}

Purpose Symbolic matrix element-wise integer part.
Syntax fix(X)
Description
fix \((X)\) is the matrix of the integer parts of \(X\).
\(f i x(X)=f l o o r(X)\) if \(X\) is positive and ceil \((X)\) if \(X\) is negative.
See Also round, ceil, floor, frac

Purpose Round symbolic matrix toward negative infinity

\section*{Syntax \\ floor (X)}

Description
Example
```

x = sym(-5/2)
[fix(x) floor(x) round(x) ceil(x) frac(x)]
= [ -2, -3, -3, -2, -1/2]

```

See Also round, ceil, fix, frac

\section*{fortran}

\section*{Purpose Fortran representation of a symbolic expression}

\section*{Syntax \\ fortran(S)}

Description

\section*{Examples}

The statements
```

syms x
f = taylor(log(1+x));
fortran(f)

```
return
\[
t 0=x-x * * 2 / 2+x * * 3 / 3-x * * 4 / 4+x * * 5 / 5
\]

The statements
```

H = sym(hilb(3));
fortran(H)

```
return
\[
\begin{array}{lll}
H(1,1)=1 & H(1,2)=1 \cdot E O / 2 \cdot E O & H(1,3)=1 \cdot E O / 3 \cdot E O \\
H(2,1)=1 \cdot E O / 2 \cdot E O & H(2,2)=1 \cdot E O / 3 \cdot E O & H(2,3)=1 \cdot E O / 4 \cdot E O \\
H(3,1)=1 \cdot E O / 3 \cdot E O & H(3,2)=1 \cdot E O / 4 \cdot E O & H(3,3)=1 \cdot E O / 5 \cdot E O
\end{array}
\]
See Also

Purpose
Fourier integral transform

\section*{Syntax}
\[
\begin{aligned}
& F=\operatorname{fourier}(f) \\
& F=\operatorname{fourier}(f, v) \\
& F=\operatorname{fourier}(f, u, v)
\end{aligned}
\]

Description
\(F=\) fourier (\(f\)) is the Fourier transform of the symbolic scalar \(f\) with default independent variable \(x\). The default return is a function of \(w\). The Fourier transform is applied to a function of \(x\) and returns a function of \(w\).
\[
f=f(x) \Rightarrow F=F(w)
\]

If \(f=f(w)\), fourier returns a function of \(t\).
\[
F=F(t)
\]

By definition
\[
F(w)=\int_{-\infty}^{\infty} f(x) e^{-i w x} d x
\]
where x is the symbolic variable in f as determined by findsym.
\(F=\) fourier \((f, v)\) makes \(F\) a function of the symbol \(v\) instead of the default \(w\).
\[
F(v)=\int_{-\infty}^{\infty} f(x) e^{-i v x} d x
\]
\(F=\) fourier (\(f, u, v\)) makes \(f\) a function of \(u\) and \(F\) a function of \(v\) instead of the default variables \(x\) and \(w\), respectively.
\[
F(v)=\int^{\infty} f(u) e^{-i v u} d u
\]

\section*{fourier}

\section*{Examples}
\begin{tabular}{|c|c|}
\hline Fourier Transform & MATLAB Command \\
\hline \(f(x)=e^{-x^{2}}\) & \(f=\exp \left(-x^{\wedge} 2\right)\) \\
\hline \(F[f](w)=\int f(x) e^{-i x w} d x\) & fourier(f) \\
\hline & returns \\
\hline \(=\sqrt{\pi} e^{-w^{2} / 4}\) & \(p i^{\wedge}(1 / 2) * \exp \left(-1 / 4^{*} w^{\wedge} 2\right)\) \\
\hline \(g(w)=e^{-|w|}\) & \(g=\exp (-a b s(w))\) \\
\hline \[
F[g](t)=\int g(w) e^{-i t w} d w
\] & fourier(g) \\
\hline \(=2\) & returns \\
\hline \[
\overline{1+t^{2}}
\] & \(2 /\left(1+t^{\wedge} 2\right)\) \\
\hline \(f(x)=x e^{-|x|}\) & \(f=x^{*} \exp (-\operatorname{abs}(x))\) \\
\hline \[
F[f](u)=\int f(x) e^{-i x u} d x
\] & fourier(f,u) \\
\hline \(4 i\) & returns \\
\hline \[
=-\frac{4 l}{\left(1+u^{2}\right)^{2 u}}
\] & \(-4^{*} i /\left(1+u^{\wedge} 2\right)^{\wedge} 2^{*} u\) \\
\hline
\end{tabular}

\section*{Fourier Transform}
\[
f(x, v)=e^{-x^{2}|v| \frac{\sin v}{v}, x \text { real }}
\]
\[
F[f(v)](u)=\int^{\infty} f(x, v) e^{-i v u} d v
\]
\[
-\infty
\]
\[
=-\operatorname{atan} \frac{u-1}{x^{2}}+\operatorname{atan} \frac{u+1}{x^{2}}
\]
ifourier, laplace, ztrans

\section*{frac}

Purpose Symbolic matrix element-wise fractional parts

\section*{Syntax frac (X)}

Description
frac \((X)\) is the matrix of the fractional parts of the elements of \(X\). frac (X) = X - fix (X)

Example
```

x = sym(-5/2)
[fix(x) floor(x) round(x) ceil(x) frac(x)]
= [ -2, -3, -3, -2, -1/2]

```

See Also round, ceil, floor, fix

Purpose
Function calculator

\section*{Syntax \\ funtool}

Description
funtool is a visual function calculator that manipulates and displays functions of one variable. At the click of a button, for example, funtool draws a graph representing the sum, product, difference, or ratio of two functions that you specify. funtool includes a function memory that allows you to store functions for later retrieval.

At startup, funtool displays graphs of a pair of functions, \(f(x)=x\) and \(g(x)=1\). The graphs plot the functions over the domain \(\left[-2 * p i, 2^{*} p i\right]\). funtool also displays a control panel that lets you save, retrieve, redefine, combine, and transform \(f\) and \(g\).

Text Fields. The top of the control panel contains a group of editable text fields.

\footnotetext{
\(\mathbf{f}=\)
Displays a symbolic expression representing f. Edit this field to redefine f .
\(\mathbf{g}=\quad\) Displays a symbolic expression representing g. Edit this field to redefine g .
}

\section*{funtool}
\(\mathbf{x =} \quad\)\begin{tabular}{l}
Displays the domain used to plot \(f\) and \(g\). Edit this field to \\
specify a different domain.
\end{tabular}\(\quad\)\begin{tabular}{l}
Displays a constant factor used to modify \(f\) (see button \\
descriptions in the next section). Edit this field to change the \\
value of the constant factor.
\end{tabular}
funtool redraws \(f\) and \(g\) to reflect any changes you make to the contents of the control panel's text fields.

Control Buttons. The bottom part of the control panel contains an array of buttons that transform \(f\) and perform other operations.

The first row of control buttons replaces \(f\) with various transformations of \(f\).
\begin{tabular}{ll}
\(\mathbf{d} / \mathbf{d x}\) & Derivative of \(f\) \\
\(\boldsymbol{\text { int } \mathbf { f }}\) & Integral of \(f\) \\
\(\boldsymbol{\operatorname { s i m p l e } f}\) & Simplified form of \(f\), if possible \\
num \(\mathbf{f}\) & Numerator of \(f\) \\
\(\boldsymbol{\operatorname { d e n } \mathbf { f }}\) & Denominator of \(f\) \\
\(\mathbf{1 / f}\) & Reciprocal of \(f\) \\
finv & Inverse of \(f\)
\end{tabular}

The operators intf and finv may fail if the corresponding symbolic expressions do not exist in closed form.

The second row of buttons translates and scales \(f\) and the domain of \(f\) by a constant factor. To specify the factor, enter its value in the field labeled \(\mathbf{a}=\) on the calculator control panel. The operations are
\begin{tabular}{ll}
\(\mathbf{f + a}\) & Replaces \(f(x)\) by \(f(x)+\) a. \\
\(\mathbf{f - a}\) & Replaces \(f(x)\) by \(f(x)-\) a. \\
\(\mathbf{f}^{*} \mathbf{a}\) & Replaces \(f(x)\) by \(f(x) *\) a. \\
\(\mathbf{f / a}\) & Replaces \(f(x)\) by \(f(x) /\) a. \\
\(\mathbf{f}^{\wedge} \mathbf{a}\) & Replaces \(f(x)\) by \(f(x) \wedge\) a. \\
\(f(\mathbf{x}+\mathbf{a})\) & Replaces \(f(x)\) by \(f(x+a)\).
\end{tabular}
\(\mathbf{f}\left(\mathbf{x}^{*} \mathbf{a}\right) \quad\) Replaces \(f(x)\) by \(f(x\) * \(a)\).
The first four buttons of the third row replace \(f\) with a combination of \(f\) and \(g\).
\(\mathbf{f}+\mathbf{g} \quad\) Replaces \(f(x)\) by \(f(x)+g(x)\).
f-g Replaces \(f(x)\) by \(f(x)-g(x)\).
\(\mathbf{f}^{*} \mathbf{g} \quad\) Replaces \(f(x)\) by \(f(x)\) * \(g(x)\).
\(\mathbf{f} / \mathbf{g} \quad\) Replaces \(f(x)\) by \(f(x) / g(x)\).
The remaining buttons on the third row interchange \(f\) and \(g\).
\(\mathbf{g}=\mathbf{f} \quad\) Replaces g with f .
swap \(\quad\) Replaces \(f\) with \(g\) and \(g\) with \(f\).
The first three buttons in the fourth row allow you to store and retrieve functions from the calculator's function memory.

Insert Adds \(f\) to the end of the list of stored functions.
Cycle \(\quad\) Replaces f with the next item on the function list.
Delete Deletes f from the list of stored functions.
The other four buttons on the fourth row perform miscellaneous functions:
Reset Resets the calculator to its initial state.
Help Displays the online help for the calculator.
Demo Runs a short demo of the calculator.
Close Closes the calculator's windows.
See Also ezplot, syms

\section*{heaviside}

\section*{Purpose Compute the Heaviside step function}

\section*{Syntax heaviside(x)}

Description heaviside (x) has the value 0 for \(\mathrm{x}<0,1\) for \(\mathrm{x}>0\), and \(\operatorname{NaN}\) for \(\mathrm{x}==0\). heaviside is not a function in the strict sense.

See Also dirac

Purpose

\section*{Syntax \\ R \(=\) horner \((P)\)}

Description

Examples

See Also
Horner polynomial representation element of \(P\) into its Horner, or nested, representation.
```

horner $\left(x^{\wedge} 3-6^{*} x^{\wedge} 2+11^{*} x-6\right)$ returns
$-6+(11+(-6+x) * x) * x$
horner ([ $\left.\left.x^{\wedge} 2+x ; y^{\wedge} 3-2^{*} y\right]\right)$ returns
[ $\quad(1+x) * x]$
[(-2+y^2)*y]
-6+(11+(-6+x)*x)*x
horner([ [x^2+x;y^3-2*y]) returns
[(-2+y^2)*y]

```
expand, factor, simple, simplify, syms

Suppose \(P\) is a matrix of symbolic polynomials. horner (\(P\)) transforms each

\section*{hypergeom}

\section*{Purpose Generalized hypergeometric function}

\section*{Syntax hypergeom(n, d, z)}

Description
hypergeom (\(\mathrm{n}, \mathrm{d}, \mathrm{z}\)) is the generalized hypergeometric function \(F(n, d, z\)), also known as the Barnes extended hypergeometric function and denoted by \({ }_{j} F_{k}\) where \(\mathrm{j}=\) length(n) and \(\mathrm{k}=\) length(d). For scalar \(\mathrm{a}, \mathrm{b}\), and c , hypergeom (\([\mathrm{a}, \mathrm{b}], \mathrm{c}, \mathrm{z}\)) is the Gauss hypergeometric function \({ }_{2} F_{1}(a, b ; c ; z)\).
The definition by a formal power series is
\[
F(n, d, z)=\sum_{k=0}^{\infty} \frac{C_{n, k}}{C_{d, k}} \cdot \frac{z^{k}}{k!}
\]
where
\[
C_{\grave{\partial}, k}=\prod_{j=1}^{|\vec{\nu}|} \frac{\Gamma\left(v_{j}+k\right)}{\Gamma\left(v_{j}\right)}
\]

Either of the first two arguments may be a vector providing the coefficient parameters for a single function evaluation. If the third argument is a vector, the function is evaluated pointwise. The result is numeric if all the arguments are numeric and symbolic if any of the arguments is symbolic.

See Abramowitz and Stegun, Handbook of Mathematical Functions, chapter 15.

\section*{Examples}
syms a z
hypergeom([],[],z) returns \(\exp (z)\)
hypergeom(1, [],z) returns \(-1 /(-1+z)\)
hypergeom(1,2, 'z') returns \((\exp (z)-1) / z\)
hypergeom([1, 2], [2, 3], 'z') returns 2*(exp(z)-1-z)/z^2
hypergeom(a, [],z) returns (\(1-z)^{\wedge}(-a)\)
hypergeom([],1,-z^2/4) returns besselj(0,z)

\section*{Purpose Inverse Fourier integral transform}
```

Syntax
f = ifourier(F)
f = ifourier(F,u)
f = ifourier(F,v,u)

```

Description
\(f=\) ifourier (F) is the inverse Fourier transform of the scalar symbolic object \(F\) with default independent variable w. The default return is a function of \(x\). The inverse Fourier transform is applied to a function of \(w\) and returns a function of \(x\).
\[
F=F(w) \Rightarrow f=f(x)
\]

If \(F=F(x)\), ifourier returns a function of \(t\).
\[
f=f(t)
\]

By definition
\[
f(x)=1 /(2 \pi) \int_{-\infty}^{\infty} F(w) e^{i w x} d w
\]
\(f=\) ifourier \((F, u)\) makes \(f\) a function of \(u\) instead of the default \(x\).
\[
f(u)=1 /(2 \pi) \int_{-\infty}^{\infty} F(w) e^{i w u} d w
\]

Here \(u\) is a scalar symbolic object.
\(f=\) ifourier \((F, v, u)\) takes \(F\) to be a function of \(v\) and \(f\) to be a function of \(u\) instead of the default \(w\) and \(x\), respectively.
\[
f(u)=1 /(2 \pi) \int^{\infty} F(v) e^{i v u} d v
\]

\section*{ifourier}

\section*{Examples}
\begin{tabular}{|c|c|}
\hline Inverse Fourier Transform & MATLAB Command \\
\hline \[
f(w)=e^{w^{2} /\left(4 a^{2}\right)}
\] & syms a real
\[
f=\exp \left(-w^{\wedge} 2 /\left(4^{*} a^{\wedge} 2\right)\right)
\] \\
\hline \[
\begin{aligned}
& F^{-1}[f](x)=\int_{-\infty}^{\infty} f(w) e^{i x w} d w \\
& =\frac{a}{\sqrt{\pi}} e^{-(a x)^{2}}
\end{aligned}
\] & ```
F = ifourier(f)
F = simple(F)
returns
a*exp(-x^2*a^2)/pi^(1/2)
``` \\
\hline \(g(x)=e^{-|x|}\) & \(g=\exp (-\operatorname{abs}(x))\) \\
\hline \[
\begin{aligned}
& F^{-1}[g](t)=\int_{-\infty}^{\infty} g(x) e^{i t x} d x \\
& =\frac{\pi}{1+t^{2}}
\end{aligned}
\] & ```
ifourier(g)
returns
1/(1+t^2)/pi
``` \\
\hline \(f(w)=2 e^{-|w|}-1\) & \(f=2 * \exp (-\operatorname{abs}(w))-1\) \\
\hline \[
\begin{aligned}
& F^{-1}[f](t)=\int_{-\infty}^{\infty} f(w) e^{i t w} d w \\
& =\frac{-(-2+\pi \delta(t))}{\frac{\left(1+t^{2}\right)}{\pi}}
\end{aligned}
\] & ```
simple(ifourier(f,t))
returns
-(-2+pi*Dirac(t))/(1+t^2)/pi
``` \\
\hline
\end{tabular}
\begin{tabular}{l|l} 
Inverse Fourier Transform & MATLAB Command \\
\hline\(f(w, v)=e^{-w^{2}|v| \frac{\sin v}{v}, w \text { real }}\) & \begin{tabular}{l}
\(\operatorname{syms} \mathrm{w} \mathrm{real}\) \\
\(\mathrm{f}=\exp \left(-\mathrm{w}^{\wedge} 2^{*} \operatorname{abs}(\mathrm{v})\right)^{*} \sin (\mathrm{v}) / \mathrm{v}\)
\end{tabular} \\
\(F^{-1}[f(v)](t)=\int f(w, v) e^{i v t} d v\) & ifourier \((\mathrm{f}, \mathrm{v}, \mathrm{t})\) \\
\(=\frac{1}{2 \pi}\left(\operatorname{atan} \frac{t+1}{w^{2}}-\operatorname{atan} \frac{t-1}{w^{2}}\right)\) & \begin{tabular}{l} 
returns \\
\(-1 / 2^{*}\left(-\operatorname{atan}\left((\mathrm{t}+1) / \mathrm{w}^{\wedge} 2\right)\right.\) \\
\(\left.+\operatorname{atan}\left((-1+\mathrm{t}) / \mathrm{w}^{\wedge} 2\right)\right) / \mathrm{pi}\)
\end{tabular} \\
\hline
\end{tabular}

Inverse Fourier Transform MATLAB Command
\(f(w, v)=e^{-w^{2}|v| \frac{\sin v}{v}, w \text { real }}\)
syms w real
\(f=\exp \left(-w^{\wedge} 2 * \operatorname{abs}(v)\right)^{*} \sin (v) / v\)
\(F^{-1}[f(v)](t)=\int^{\infty} f(w, v) e^{i v t} d v \quad\) ifourier \((\mathrm{f}, \mathrm{v}, \mathrm{t})\)
\(=\frac{1}{2 \pi}\left(\operatorname{atan} \frac{t+1}{w^{2}}-\operatorname{atan} \frac{t-1}{w^{2}}\right) \quad \begin{aligned} & \text { returns } \\ & -1 / 2^{*}\left(-\operatorname{atan}\left((t+1) / w^{\wedge} 2\right)\right. \\ & \left.+\operatorname{atan}\left((-1+t) / w^{\wedge} 2\right)\right) / \mathrm{pi}\end{aligned}\)
See Also
fourier, ilaplace, iztrans

\section*{ilaplace}

\section*{Purpose Inverse Laplace transform}
Syntax
\[
\begin{aligned}
& F=\text { ilaplace }(L) \\
& F=\text { ilaplace }(L, y) \\
& F=\text { ilaplace }(L, y, x)
\end{aligned}
\]

Description F = ilaplace (L) is the inverse Laplace transform of the scalar symbolic object \(L\) with default independent variable \(s\). The default return is a function of \(t\). The inverse Laplace transform is applied to a function of \(s\) and returns a function of \(t\).
\[
L=L(s) \Rightarrow F=F(t)
\]

If \(L=L(t)\), ilaplace returns a function of \(x\).
\[
F=F(x)
\]

By definition
\[
F(t)=\int_{c-i \infty}^{c+i \infty} L(s) e^{s t} d s
\]
where \(c\) is a real number selected so that all singularities of \(L(s)\) are to the left of the line s = c, i. \(F=\) ilaplace \((L, y)\) makes \(F\) a function of \(y\) instead of the default \(t\).
\[
F(y)=\int_{c-i \infty}^{c+i \infty} L(y) e^{s y} d s
\]

Here y is a scalar symbolic object.
\(F=\) ilaplace \((L, y, x)\) takes \(F\) to be a function of \(x\) and \(L\) a function of \(y\) instead of the default variables \(t\) and \(s\), respectively.
\[
F(x)=\int_{c-i \infty}^{c+i \infty} L(y) e^{x y} d y
\]

\section*{Examples}


\footnotetext{
See Also
}
ifourier, iztrans, laplace

\section*{imag}
\begin{tabular}{ll} 
Purpose & Symbolic imaginary part \\
Syntax & \(\operatorname{imag}(Z)\) \\
Description & \(i m a g(Z)\) is the imaginary part of a symbolic \(Z\). \\
See Also & conj, real
\end{tabular}

\section*{Purpose}

\section*{Syntax}
\[
\begin{aligned}
R & =\operatorname{int}(S) \\
R & =\operatorname{int}(S, v) \\
R & =\operatorname{int}(S, a, b) \\
R & =\operatorname{int}(S, v, a, b)
\end{aligned}
\]

\section*{Examples}
int \(\left(-2^{*} x /\left(1+x^{\wedge} 2\right)^{\wedge} 2\right)\) returns 1/(1+x^2)
int \(\left(x /\left(1+z^{\wedge} 2\right), z\right)\) returns
x*atan(z)
int \(\left(x^{*} \log (1+x), 0,1\right)\) returns
1/4
int (2*x, \(\sin (\mathrm{t}), 1)\) returns
1-sin(t)^2
int ([exp(t), exp(alpha*t)]) returns
[ \(\exp (\mathrm{t}), 1 /\) alpha*exp(alpha*t)]
See Also diff, symsum

\section*{int8, int 16, int32, int64}

Purpose Convert a symbolic matrix to signed integers
Syntax \begin{tabular}{ll} 
int8(S) \\
int16(S) \\
& int32(S) \\
& int64(S)
\end{tabular}

Description int8(S) converts a symbolic matrix S to a matrix of signed 8-bit integers.
int16(S) converts \(S\) to a matrix of signed 16-bit integers.
int32 (S) converts \(S\) to a matrix of signed 32-bit integers.
int64(S) converts \(S\) to a matrix of signed 64-bit integers.

Note The output of int8, int16, int32, and int64 does not have data type symbolic.

The following table summarizes the output of these four functions.
\begin{tabular}{|c|c|c|c|c|}
\hline Function & Output Range & Output Type & Bytes per Element & Output Class \\
\hline int8 & -128 to 127 & Signed 8-bit integer & 1 & int8 \\
\hline int16 & \(-32,768\) to 32,767 & Signed 16-bit integer & 2 & int16 \\
\hline int32 & \(-2,147,483,648\) to \(2,147,483,647\) & Signed 32-bit integer & 4 & int32 \\
\hline int64 & \[
\begin{aligned}
& -9,223,372,036,854,775,808 \text { to } \\
& 9,223,372,036,854,775,807
\end{aligned}
\] & Signed 64-bit integer & 8 & int64 \\
\hline
\end{tabular}

\section*{See Also}
sym, vpa, single, double, uint8, uint16, uint32, uint64

\section*{Purpose \\ Matrix inverse}

\section*{Syntax \\ \(R=\operatorname{inv}(A)\)}

Description
Examples
The statements
```

A = sym([2,-1,0;-1,2,-1;0,-1,2]);
inv(A)

```
return
[ 3/4, 1/2, 1/4]
[ \(1 / 2,1,1 / 2]\)
[ \(1 / 4,1 / 2,3 / 4]\)
The statements
```

syms a b c d
A = [a b; c d]
inv(A)

```
return
[ d/(a*d-b*c), -b/(a*d-b*c)]
[ -c/(a*d-b*c), \(a /(a * d-b * c)]\)
Suppose you have created the following M-file.
```

%% Generate a symbolic N-by-N Hilbert matrix.
function A = genhilb(N)
syms t;
for i = 1:N
for j = 1:N
A(i,j) = 1/(i + j - t);
end
end

```

Then, the following statement
    inv(genhilb(2))
returns
\[
\begin{array}{rr}
{\left[\begin{array}{rl}
{[-3+t)^{\wedge} 2^{*}(-2+t),} & (-3+t) *(-2+t) *(-4+t)] \\
{[(-3+t) *(-2+t) *(-4+t),} & \left.-(-3+t)^{\wedge} 2^{*}(-4+t)\right]
\end{array}\right.}
\end{array}
\]
the symbolic inverse of the 2 -by- 2 Hilbert matrix.

\section*{See Also \\ vpa \\ Arithmetic Operations page}

\section*{Purpose}

Syntax

Description

Inverse \(z\)-transform
\[
\begin{aligned}
& f=\text { iztrans }(F) \\
& f=\operatorname{iztrans}(F, k) \\
& f=\operatorname{iztrans}(F, w, k)
\end{aligned}
\]
\(\mathrm{f}=\) iztrans (F) is the inverse \(z\)-transform of the scalar symbolic object F with default independent variable \(z\). The default return is a function of \(n\).
\[
f(n)=\frac{1}{2 \pi i} \oint_{|z|=R} F(z) z^{n-1} d z, n=1,2, \ldots
\]
where \(R\) is a positive number chosen so that the function \(F(z)\) is analytic on and outside the circle \(|z|=R\).

If \(F=F(n)\), iztrans returns a function of \(k\).
\[
f=f(k)
\]
\(f=\) iztrans \((F, k)\) makes \(f\) a function of \(k\) instead of the default \(n\). Here \(k\) is a scalar symbolic object.
\(f=\) iztrans \((F, w, k)\) takes \(F\) to be a function of \(w\) instead of the default findsym ( \(F\) ) and returns a function of \(k\).
\[
F=F(w) \Rightarrow f=f(k)
\]

\section*{Examples}
\begin{tabular}{ll}
\hline Inverse Z-Transform & MATLAB Operation \\
\hline\(f(z)=\frac{2 z}{(z-2)^{2}}\) & \(\mathrm{f}=2^{\star} \mathrm{z} /(\mathrm{z}-2)^{\wedge} 2\) \\
\(Z^{-1}[f]=\frac{1}{2 \pi i} \oint_{|z|=R} f(s) z^{n-1} d z\) & iztrans (f) \\
\(=n 2^{n}\) & returns \\
\hline
\end{tabular}
\[
\begin{array}{ll}
\hline \text { Inverse Z-Transform } & \text { MATLAB Operation } \\
\hline g(n)=\frac{n(n+1)}{n^{2}+2 n+1} & \mathrm{~g}=\mathrm{n}^{\star}(\mathrm{n}+1) /\left(\mathrm{n}^{\wedge} 2+2^{*} \mathrm{n}+1\right) \\
Z^{-1}[g]=\frac{1}{2 \pi i} \oint_{|n|=R} g(n) n^{k-1} d n & \text { iztrans }(\mathrm{g}) \\
=-1^{k} & \text { returns } \\
f(z)=\frac{z}{z-a} & (-1)^{\wedge} \mathrm{k} \\
Z^{-1}[f]=\frac{1}{2 \pi i} \oint_{|z|=R} f(z) z^{k-1} d z & \text { iztrans(f,k) } \mathrm{z} /(\mathrm{z}-\mathrm{a}) \\
=a^{k} & \text { returns } \\
\mathrm{I}^{k} & \mathrm{a} \mathrm{k}
\end{array}
\]
See Also ..... ifourier, ilaplace, ztrans

\section*{Purpose Jacobian matrix}
\[
\text { Syntax } \quad R=j \operatorname{acobian}(f, v)
\]

Description
jacobian( \(f, v\) ) computes the Jacobian of the scalar or vector \(f\) with respect to \(v\). The ( \(\mathrm{i}, \mathrm{j}\) )-th entry of the result is \(\partial w(i) / \partial v(j)\). Note that when f is scalar, the Jacobian of \(f\) is the gradient of \(f\). Also, note that \(v\) can be a scalar, although in that case the result is the same as \(\operatorname{diff}(f, v)\).

\section*{Examples}

The statements
\[
\begin{aligned}
& f=[x * y * z ; y ; x+z] ; \\
& v=[x, y, z] ; \\
& R=j \operatorname{acobian}(f, v) \\
& b=j \operatorname{acobian}(x+z, v)
\end{aligned}
\]
return
R =
[y*z, x*z, x*y]
[ 0, 1, 0]
[ 1, 0, 1]
b \(=\)
[1, 0, 1]
See Also diff

Purpose Jordan canonical form
Syntax
\(J=j o r d a n(A)\)
[V,J] = jordan(A)

Description
jordan (A) computes the Jordan canonical (normal) form of A, where A is a symbolic or numeric matrix. The matrix must be known exactly. Thus, its elements must be integers or ratios of small integers. Any errors in the input matrix may completely change the Jordan canonical form.
\([\mathrm{V}, \mathrm{J}]=\) jordan (A) computes both J , the Jordan canonical form, and the similarity transform, V , whose columns are the generalized eigenvectors. Moreover, \(\mathrm{V} \backslash \mathrm{A} * \mathrm{~V}=\mathrm{J}\).

\section*{Examples}

The statements
```

 A = [1-3 -2; -1 1-1; 24 5]
 [V,J] = jordan(A)
 return
$A=$
$\begin{array}{lll}1 & -3 & -2\end{array}$
$\begin{array}{lll}-1 & 1 & -1\end{array}$
245
V =
$\begin{array}{lll}-1 & -1 & 1\end{array}$
$\begin{array}{lll}0 & -1 & 0\end{array}$
10
$J=$

3	0	0
0	2	1
0	0	2

Then the statement

```
```

V\A*V

```
V\A*V
returns
```

```
ans =
```

3	0	0
0	2	1
0	0	2

See Also
eig, poly

lambertw

Purpose Lambert's W function

Syntax \quad| W | $=\operatorname{lambertw}(X)$ |
| ---: | :--- |
| | $W=\operatorname{lambertw}(K, X)$ |

Description

Examples

References

W = lambertw(X) evaluates Lambert's W function at the elements of X, a numeric matrix or a symbolic matrix. Lambert's W solves the equation

$$
w e^{w}=x
$$

for w as a function of x.
$W=$ lambertw (K, X) is the K-th branch of this multi-valued function.

```
lambertw([0 -exp(-1); pi 1]) returns
```

$$
\begin{array}{rr}
0 & -1.0000 \\
1.0737 & 0.5671
\end{array}
$$

The statements

```
    syms x y
```

 lambertw([0 x;1 y])
 return
[0, lambertw(x)]
[lambertw(1), lambertw(y)]
[1] Corless, R.M, G.H. Gonnet, D.E.G. Hare, and D.J. Jeffrey, Lambert's W Function in Maple, Technical Report, Dept. of Applied Math., Univ. of Western Ontario, London, Ontario, Canada.
[2] Corless, R.M, Gonnet, G.H. Gonnet, D.E.G. Hare, and D.J. Jeffrey, On Lambert's W Function, Technical Report, Dept. of Applied Math., Univ. of Western Ontario, London, Ontario, Canada.

Both papers are available by anonymous FTP from

```
cs-archive.uwaterloo.ca
```


Purpose
 Laplace transform

Syntax laplace (F)
 laplace (F, t)
 fourier(F,w,z)

Description
$\mathrm{L}=$ laplace (F) is the Laplace transform of the scalar symbol F with default independent variable t. The default return is a function of s. The Laplace transform is applied to a function of t and returns a function of s.

$$
F=F(t) \Rightarrow L=L(s)
$$

If $F=F(s)$, laplace returns a function of t.

$$
L=L(t)
$$

By definition

$$
L(s)=\int_{0}^{\infty} F(t) e^{-s t} d t
$$

where t is the symbolic variable in F as determined by findsym.
$L=$ laplace (F, t) makes L a function of t instead of the default s.

$$
L(t)=\int_{0}^{\infty} F(x) e^{-t x} d x
$$

Here L is returned as a scalar symbol.
$L=$ laplace (F, w, z) makes L a function of z and F a function of w instead of the default variables s and t, respectively.

$$
L(z)=\int_{0}^{\infty} F(w) e^{-z w} d w
$$

laplace

Examples

Laplace Transform	MATLAB Command
$f(t)=t^{4}$	$f=t \wedge 4$
$L[f]=\int_{0} f(t) e^{-t s} d t$	laplace(f) returns
$=\frac{24}{s}$	24/s^5
$g(s)=\frac{1}{\sqrt{s}}$	$\mathrm{g}=1 / \mathrm{sqrt}(\mathrm{s})$
$L[g](t)=\int_{0} g(s) e^{-s t} d s$	laplace (g) returns
$=\sqrt{\frac{\pi}{t}}$	
$f(t)=e^{-a t}$	$f=\exp \left(-a^{*} t\right)$
$L[f](x)=\int_{0}^{\infty} f(t) e^{-t x} d t$	laplace(f, x) returns
$=\frac{1}{x+a}$	1/($x+a)$

[^0]fourier, ilaplace, ztrans

Purpose

Syntax
 latex(S)

Description

Examples

return
$x-1 / 2 \backslash,\{x\}^{\wedge}\{2\}+1 / 3 \backslash,\{x\}^{\wedge}\{3\}-1 / 4 \backslash,\{x\}^{\wedge}\{4\}+1 / 5 \backslash,\{x\}^{\wedge}\{5\}$
The statements
H = sym(hilb(3));
latex (H)
return
\left [\begin \{array\}\{ccc\} 1\&1/2\&1/3
\noalign\{\medskip\}1/2\&1/ }
3\&1/4

\noalign\{\medskip\}1/3\&1/4\&1/5\end \{array\}\right] }
The statements
syms alpha t
$\mathrm{A}=[$ alpha t alpha*t];
latex(A)
return
\left [\begin \{array\}\{ccc\} \alpha\&t\&\alpha\,t\end \{array\}\right] }
See Also pretty, ccode, fortran

limit

Purpose Limit of a symbolic expression

Syntax	$\operatorname{limit}(\mathrm{F}, \mathrm{x}, \mathrm{a})$
	$\operatorname{limit}(\mathrm{F}, \mathrm{a})$
	limit (F)
	limit(F, x, a, 'right')
	limit(F, $x, a, ' l e f t ')$

Description $\quad \operatorname{limit}(F, x, a)$ takes the limit of the symbolic expression F as x-> a.
limit (F, a) uses findsym(F) as the independent variable.
$\operatorname{limit}(F)$ uses a $=0$ as the limit point.
$\operatorname{limit}(F, x, a, ' r i g h t ')$ or limit($F, x, a, ' l e f t ')$ specify the direction of a one-sided limit.

Examples

Assume

```
syms x a t h;
```

Then

```
limit(sin(x)/x) => 1
limit(1/x,x,0,'right') => inf
limit(1/x,x,0,'left') => -inf
limit((sin(x+h)-\operatorname{sin}(x))/h,h,0) => cos(x)
v = [(1 + a/x)^x, exp(-x)];
limit(v,x,inf,'left') => [exp(a), 0]
```


See Also

pretty, ccode, fortran

Purpose
Syntax $\quad \log 10(X)$
Description

See Also $\quad \log 2$

Syntax
 log2(X)

Description
$Y=\log 2(X)$ returns the logarithm to the base 2 of X. If X is a matrix, Y is a matrix of the same size, each entry of which is the logarithm of the corresponding entry of X.

See Also
 $\log 10$

Purpose Access Maple kernel

```
Syntax r = maple('statement')
r = maple('function',arg1,arg2,...)
[r, status] = maple(...)
maple('traceon') or maple trace on
maple('traceoff') or maple trace off
```


Description

Examples

maple('statement') sends statement to the Maple kernel and returns the result. A semicolon for the Maple syntax is appended to statement if necessary.
maple('function', arg1, arg2, ...) accepts the quoted name of any Maple function and associated input arguments. The arguments are converted to symbolic expressions if necessary, and function is then called with the given arguments. If the input arguments are syms, then maple returns a sym. Otherwise, it returns a result of class char.
[r, status] = maple(...) is an option that returns the warning/error status. When the statement execution is successful, r is the result and status is 0 . If the execution fails, r is the corresponding warning/error message, and status is a positive integer.
maple('traceon') (or maple trace on) causes all subsequent Maple statements and results to be printed. maple('traceoff') (or maple trace off) turns this feature off.

Each of the following statements evaluate π to 100 digits.

```
maple('evalf(Pi,100)')
maple evalf Pi 100
maple('evalf','Pi',100)
```

The statement

```
[result,status] = maple('BesselK',4.3)
```

returns the following output because Maple's BesselK function needs two input arguments.

```
result =
Error, (in BesselK) expecting 2 arguments, got 1
status =
2
```

The traceon command shows how Symbolic Math Toolbox commands interact with Maple. For example, the statements

```
    syms x
    v = [x^2-1; x^2-4]
    maple traceon % or maple trace on
    w = factor(v)
return
v =
[ x^2-1]
[ x^2-4]
statement:
    map(ifactor,array([[x^2-1],[x^2-4]]));
result:
    Error, (in ifactor) invalid arguments
statement:
    map(factor,array([[x^2-1],[x^2-4]]));
result:
    matrix([[(x-1)*(x+1)], [(x-2)*(x+2)]])
w =
[ (x-1)*(x+1)]
[ (x-2)*(x+2)]
```

This example reveals that the factor statement first invokes Maple's integer factor (ifactor) statement to determine whether the argument is a factorable integer. If Maple's integer factor statement returns an error, the Symbolic Math Toolbox factor statement then invokes Maple's expression factoring statement.

Purpose Initialize the Maple kernel

Syntax mapleinit

Description
mapleinit determines the path to the directory containing the Maple Library, loads the Maple linear algebra and integral transform packages, initializes digits, and establishes several aliases. mapleinit is called by the MEX-file interface to Maple.

You can edit the mapleinit M-file to change the pathname to the Maple library. You do this by changing the initstring variable in mapleinit.m to the full pathname of the Maple library, as described below.

UNIX. Suppose you already have a copy of the Library for Maple 8 in the UNIX directory /usr/local/Maple/lib. You can edit mapleinit.m to contain

```
maplelib = '/usr/local/Maple/lib'
```

and then delete the copy of the Maple Library that is distributed with MATLAB.

Microsoft-Windows. Suppose you already have a copy of the Library for Maple 8 in the directory C: $\backslash M A P L E \backslash L I B$. You can edit mapleinit.m to contain

```
maplelib = 'C:\MAPLE\LIB'
```

and then delete the copy of the Maple Library that is distributed with the Symbolic Math toolboxes.

mfun

Purpose	Numeric evaluation of Maple mathematical function
Syntax	$Y=$ mfun('function', par1, par2, par3, par4)
Description	mfun('function', par1, par2, par3, par4) numerically evaluates one of the special mathematical functions known to Maple. Each par argument is a numeric quantity corresponding to a Maple parameter for function. You can use up to four parameters. The last parameter specified can be a matrix, usually corresponding to X. The dimensions of all other parameters depend on the Maple specifications for function. You can access parameter information for Maple functions using one of the following commands: help mfunlist mhelp function
	Maple evaluates function using 16 digit accuracy. Each element of the result is a MATLAB numeric quantity. Any singularity in function is returned as NaN .
Examples	mfun('FresnelC', 0:5) returns
	$\begin{array}{llllll}0 & 0.7799 & 0.4883 & 0.6057 & 0.4984 & 0.5636\end{array}$
	mfun('Chi',[3*i 0]) returns
	$0.1196+1.5708 \mathrm{i}$ NaN
See Also	mfunlist, mhelp

Purpose

Syntax mfunlist

Description

Limitations

See Also mfun, mhelp
References

Table
Conventions

List special functions for use with mfun
mfunlist lists the special mathematical functions for use with the mfun function. The following tables describe these special functions.

You can access more detailed descriptions by typing
mhelp function
In general, the accuracy of a function will be lower near its roots and when its arguments are relatively large.

Run-time depends on the specific function and its parameters. In general, calculations are slower than standard MATLAB calculations.
[1] Abramowitz, M. and I.A., Stegun, Handbook of Mathematical Functions, Dover Publications, 1965.

The following conventions are used in the following table, unless otherwise indicated in the Arguments column.

x, y	real argument
$z, z 1, z 2$	complex argument
m, n	integer argument

mfunlist

MFUN Special Functions

Function Name	Definition	mfun Name	Arguments
Bernoulli Numbers and Polynomials	Generating functions: $\frac{e^{x t}}{e^{t}-1}=\sum_{n=0}^{\infty} B_{n}(x) \cdot \frac{t^{n-1}}{n!}$	bernoulli(n) bernoulli(n, t)	$\begin{aligned} & n \geq 0 \\ & 0<\|t\|<2 \pi \end{aligned}$
Bessel Functions	BesselI, BesselJ - Bessel functions of the first kind. BesselK, BesselY - Bessel functions of the second kind.	Besseld (v, x) $\operatorname{Bessely}(v, x)$ Bessell (v, x) BesselK (v, x)	v is real.
Beta Function	$B(x, y)=\frac{\Gamma(x) \cdot \Gamma(y)}{\Gamma(x+y)}$	$\operatorname{Beta}(\mathrm{x}, \mathrm{y})$	
Binomial Coefficients	$\begin{aligned} & \binom{m}{n}=\frac{m!}{n!(m-n)!} \\ = & \frac{\Gamma(m+1)}{\Gamma(n+1) \Gamma(m-n+1)} \end{aligned}$	binomial(m, n)	

MFUN Special Functions (Continued)

Function Name	Definition	mfun Name	Arguments
Complete Elliptic Integrals	Legendre's complete elliptic integrals of the first, second, and third kind.	```EllipticK(k) EllipticE(k) EllipticPi(a,k)```	a is real $-\infty<a<\infty$ k is real $0<k<1$
Complete Elliptic Integrals with Complementary Modulus	Associated complete elliptic integrals of the first, second, and third kind using complementary modulus.	EllipticCK(k) EllipticCE(k) EllipticCPi(a,k)	a is real $-\infty<\alpha<\infty$ k is real $0<k<1$
Complementary Error Function and Its Iterated Integrals	$\begin{gathered} \operatorname{erfc}(z)=\frac{2}{\sqrt{\pi}} \cdot \int_{z}^{\infty} e^{-t^{2}} d t=1-\operatorname{erf}(z) \\ \operatorname{erfc}(-1, z)=\frac{2}{\sqrt{\pi}} \cdot e^{-z^{2}} \\ \operatorname{erfc}(n, z)=\int_{z}^{\infty} \operatorname{erfc}(n-1, z) d t \end{gathered}$	$\begin{aligned} & \operatorname{erfc}(z) \\ & \operatorname{erfc}(n, z) \end{aligned}$	$n>0$
Dawson's Integral	$F(x)=e^{-x^{2}} \cdot \int_{0}^{x} e^{-t^{2}} d t$	dawson(x)	

mfunlist

Function Name	Definition	mfun Name	Arguments
Digamma Function	$\psi(x)=\frac{d}{d x} \ln (\Gamma(x))=\frac{\Gamma^{\prime}(x)}{\Gamma(x)}$	Psi(x)	
Dilogarithm Integral	$f(x)=\int_{1}^{x} \frac{\ln (t)}{1-t} d t$	dilog(x)	$x>1$
Error Function	$\operatorname{erf}(z)=\frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-t^{2}} d t$	$\operatorname{erf}(z)$	
Euler Numbers and Polynomials	Generating function for Euler numbers: $\frac{1}{\operatorname{ch}(t)}=\sum_{n=0}^{\infty} E_{n} \frac{t^{n}}{n!}$	$\begin{aligned} & \operatorname{euler}(n) \\ & \operatorname{euler}(n, z) \end{aligned}$	$\begin{aligned} & n \geq 0 \\ & \|t\|<\frac{\pi}{2} \end{aligned}$

MFUN Special Functions (Continued)

Function Name	Definition	mfun Name	Arguments
Exponential Integrals	$\begin{aligned} & E i(n, z)=\int_{1}^{\infty} \frac{e^{-z t}}{t^{n}} d t \\ & E i(x)=P V-\int_{-\infty}^{x} \frac{e^{t}}{t} \end{aligned}$	$\begin{aligned} & \mathrm{Ei}(\mathrm{n}, \mathrm{z}) \\ & \mathrm{Ei}(\mathrm{x}) \end{aligned}$	$\begin{aligned} & n \geq 0 \\ & \operatorname{Real}(z)>0 \end{aligned}$
Fresnel Sine and Cosine Integrals	$\begin{aligned} & C(x)=\int_{0}^{x} \cos \left(\frac{\pi}{2} \cdot t^{2}\right) d t \\ & S(x)=\int_{0}^{x} \sin \left(\frac{\pi}{2} \cdot t^{2}\right) d t \end{aligned}$	$\begin{aligned} & \text { FresnelC }(x) \\ & \text { FresnelS(x) } \end{aligned}$	
Gamma Function	$\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} d t$	GAMMA (z)	
Harmonic Function	$h(n)=\sum_{k=1}^{n} \frac{1}{k}=\psi(n+1)+\gamma$	harmonic (n)	$n>0$

mfunlist

Function Name	Definition	mfun Name	Arguments
Hyperbolic Sine and Cosine Integrals	$\begin{gathered} \operatorname{Shi}(z)=\int_{0}^{z} \frac{\sinh (t)}{t} d t \\ \operatorname{Chi}(z)=\gamma+\ln (z)+\int_{0}^{z} \frac{\cosh (t)-1}{t} d t \end{gathered}$	$\begin{aligned} & \operatorname{Shi}(z) \\ & \operatorname{Chi}(z) \end{aligned}$	
(Generalized) Hypergeometric Function	$F(n, d, z)=\sum_{k=0}^{\infty} \frac{\prod_{i=1}^{j} \frac{\Gamma\left(n_{i}+k\right)}{\Gamma\left(n_{i}\right)} \cdot z^{k}}{\prod_{i=1}^{m} \frac{\Gamma\left(d_{i}+k\right)}{\Gamma\left(d_{i}\right)} \cdot k!}$ where j and m are the number of terms in n and d , respectively.	$\text { hypergeom (} n, d, x \text {) }$ where $\begin{aligned} & \mathrm{n}=[\mathrm{n} 1, \mathrm{n} 2, \ldots] \\ & \mathrm{d}=[\mathrm{d} 1, \mathrm{~d} 2, \ldots] \end{aligned}$	$\mathrm{n} 1, \mathrm{n} 2, \ldots$ are real. d1, d2, ... are real and non-negative.
Incomplete Elliptic Integrals	Legendre's incomplete elliptic integrals of the first, second, and third kind.	$\begin{aligned} & \text { EllipticF(x,k) } \\ & \text { EllipticE(x, k) } \\ & \text { EllipticPi(x, a, } k) \end{aligned}$	$\begin{aligned} & 0<x \leq \infty \\ & \text { a is real } \\ & -\infty<a<\infty \\ & \\ & \text { k is real } \\ & 0<k<1 \end{aligned}$

MFUN Special Functions (Continued)

Function Name	Definition	mfun Name	Arguments
Incomplete Gamma Function		GAMMA $(z 1, z 2)$	

mfunlist

MFUN Special Functions (Continued)

Function Name	Definition	mfun Name	Arguments
Polygamma Function	$\psi^{(n)}(z)=\frac{d^{n}}{d z} \psi(z)$	Psi (n, z)	$n \geq 0$
where $\psi(z)$ is the Digamma function.	$\operatorname{Ssi(z)}$		
Shifted Sine Integral	$S s i(z)=\operatorname{Si(z)-\frac {\pi }{2}}$		

Orthogonal Polynomials

The following functions require the Maple Orthogonal Polynomial Package. They are available only with the Extended Symbolic Math Toolbox. Before using these functions, you must first initialize the Orthogonal Polynomial Package by typing

```
maple('with','orthopoly')
```

Note that in all cases, n is a non-negative integer and x is real.
Orthogonal Polynomials

Polynomial	Maple Name
Gegenbauer	$G(n, a, x)$
Arguments Hermite expression or a rational number greater than $-1 / 2$.	
Laguerre	$L(n, x)$

Orthogonal Polynomials (Continued)

Polynomial	Maple Name		
Generalized Laguerre	$\mathrm{L}(\mathrm{n}, \mathrm{a}, \mathrm{x})$		
Legen are	$\mathrm{P}(\mathrm{n}, \mathrm{x})$		a is a nonrational algebraic
:---			
expression or a rational number			
greater than -1.			

mhelp

Purpose	Maple help
Syntax	mhelp topic mhelp('topic')
Description	mhelp topic and mhelp('topic') both return Maple's online documentation for the specified Maple topic.
Examples	mhelp BesselI and mhelp('BesselI') both return Maple's online documentation for the Maple BesselI function.
See Also	maple

Purpose

Syntax
 $\bmod (A, B)$

Symbolic matrix elementwise modulus
$C=\bmod (A, B)$ for symbolic matrices A and B with integer elements is the positive remainder in the element-wise division of A by B. For matrices with polynomial entries, $\bmod (A, B)$ is applied to the individual coefficients.

```
ten = sym('10');
mod(2^ten,ten^3)
24
syms x
mod(x^3-2*x+999,10)
x^3+8*x+9
```

See Also quorem

Purpose Basis for null space

Syntax
 Z = null(A)

Description

Examples
The statements
A = sym(magic(4));
Z $=\operatorname{null}(A)$
A*Z
return
[-1]
[-3]
[3]
[1]
[0]
[0]
[0]
[0]
See Also arithmetic operators, colspace, rank, rref, svd null in the online MATLAB Function Reference.

Purpose
Syntax
Description

Examples

[$N, D]=$ numden (A) converts each element of A to a rational form where the numerator and denominator are relatively prime polynomials with integer coefficients. A is a symbolic or a numeric matrix. N is the symbolic matrix of numerators, and D is the symbolic matrix of denominators.

```
[n,d] = numden(sym(4/5)) returns n = 4 and d = 5.
[n,d] = numden(x/y + y/x) returns
    n =
    x^2+y^2
    d =
    y*x
```

The statements

$$
\begin{aligned}
& A=[a, 1 / b] \\
& {[n, d]=\operatorname{numden}(A)}
\end{aligned}
$$

return
A =
[a, 1/b]
n =
[a, 1]
d $=$
[1, b]

Purpose Characteristic polynomial of a matrix
Syntax
$\mathrm{p}=\operatorname{poly}(\mathrm{A})$
$\mathrm{p}=\operatorname{poly}(\mathrm{A}, \mathrm{v})$

Description

Examples
The statements

```
    syms z
    A = gallery(3)
    p = poly(A)
    q = poly(sym(A))
    s = poly(sym(A),z)
```

return
A $=$
$\begin{array}{lll}-149 & -50 & -154\end{array}$
$537180 \quad 546$
$\begin{array}{lll}-27 & -9 & -25\end{array}$
p $=$
$\begin{array}{llll}1.0000 & -6.0000 & 11.0000 & -6.0000\end{array}$
q=
$x^{\wedge} 3-6 * x^{\wedge} 2+11 * x-6$
s =
$z^{\wedge} 3-6 \star z^{\wedge} 2+11 * z-6$

See Also

Purpose

$$
\text { Syntax } \quad \begin{aligned}
r & =\operatorname{poly2sym}(c) \\
r & =\operatorname{poly2sym}(c, v)
\end{aligned}
$$

Examples

See Also

Polynomial coefficient vector to symbolic polynomial
$r=$ poly2sym(c) returns a symbolic representation of the polynomial whose coefficients are in the numeric vector c. The default symbolic variable is x. The variable v can be specified as a second input argument. If $c=\left[\begin{array}{cc}c 1 & c\end{array}\right.$. $r=$ poly2sym (c) has the form

$$
c_{1} x^{n-1}+c_{2} x^{n-2}+\ldots+c_{n}
$$

poly2sym uses sym's default (rational) conversion mode to convert the numeric coefficients to symbolic constants. This mode expresses the symbolic coefficient approximately as a ratio of integers, if sym can find a simple ratio that approximates the numeric value, otherwise as an integer multiplied by a power of 2 .

If x has a numeric value and sym expresses the elements of c exactly, eval(poly2sym(c)) returns the same value as polyval(c, x).

```
poly2sym([1 3 2]) returns
```

 x^2 + 3*x + 2
 poly2sym([.694228, .333, 6.2832]) returns
6253049924220329/9007199254740992*x^2+333/1000*x+3927/625
poly2sym([1 001 -1 2], y) returns
$y^{\wedge} 4+y^{\wedge} 2-y+2$
sym, sym2poly
polyval in the online MATLAB Function Reference

pretty

Purpose Prettyprint symbolic expressions

Syntax pretty(S)

Description
The pretty function prints symbolic output in a format that resembles typeset mathematics.
pretty (S) prettyprints the symbolic matrix S using the default line width of 79.

Examples The following statements
$A=\operatorname{sym}(\operatorname{pascal}(2))$
$B=\operatorname{eig}(A)$
pretty (B)
return
A $=$
$[1,1]$
$[1,2]$
B =
[3/2+1/2*5^(1/2)]
[3/2-1/2*5^(1/2)]

		1/2]
[$3 / 2+1 / 2$	5
		1/2]
	3/2-1/2	

Purpose

Syntax procread('filename')

Description

Examples

```
ident := proc(A)
```

\# ident(A) computes $A * i n v e r s e(A)$
local X;
X := inverse(A);
evalm(A \&* X);
end;

Then the statement

```
procread('ident.src')
```

installs the procedure. It can be accessed with

```
    maple('ident',magic(3))
```

or

```
maple('ident',vpa(magic(3)))
```

See Also
maple

Purpose Symbolic matrix elementwise quotient and remainder

Syntax
 $[Q, R]=$ quorem($A, B)$

Description
$[Q, R]=$ quorem (A, B) for symbolic matrices A and B with integer or polynomial elements does element-wise division of A by B and returns quotient Q and remainder R so that $A=Q . * B+R$. For polynomials, quorem (A, B, x) uses variable x instead of findsym $(A, 1)$ or findsym $(B, 1)$.

Example

```
syms x
p = x^3-2*x+5
[q,r] = quorem(x^5,p)
q = x^2+2
r = -5*x^2-10+4*x
[q,r] = quorem(10^5,subs(p,'10'))
q = 101
r=515
```

See Also mod

Purpose

Syntax

Description

Examples

Symbolic matrix rank
rank(A)
rank (A) is the rank of the symbolic matrix A.
rank([a b;c d]) is 2 .
rank(sym(magic(4))) is 3 .

Purpose	Symbolic real part
Syntax	real (Z)
Description	real (Z) is the real part of a symbolic Z.
See Also	conj, imag

Purpose

Syntax
 round (X)

Description
$Y=\operatorname{round}(X)$ rounds the elements of X to the nearest integers. Values halfway between two integers are rounded away from zero.

Example

```
x = sym(-5/2)
    [fix(x) floor(x) round(x) ceil(x) frac(x)]
    = [ -2, -3, -3, -2, -1/2]
```

See Also floor, ceil, fix, frac

Purpose Reduced row echelon form

Syntax $\quad \operatorname{rref}(A)$

Description $\quad \operatorname{rref}(A)$ is the reduced row echelon form of the symbolic matrix A.

Examples rref(sym(magic(4))) returns

[1, 0, 0, 1]
[0, 1, 0, 3]
[$0,0,1,-3$]
[0, 0, 0, 0]

Purpose

Syntax

Description

Examples

Interactive evaluation of Riemann sums

```
rsums(f)
rsums(f,a,b)
rsums(f, \[a,b])
```

rsums (f) interactively approximates the integral of $f(x)$ by Riemann sums from 0 to 1 . rsums (f) displays a graph of $f(x)$. You can then adjust the number of terms taken in the Riemann sum by using the slider below the graph. The number of terms available ranges from 2 to 128 . f can be a string or a symbolic expression.
rsums (f,a,b) and rsums(f, $[a, b])$ approximates the integral from a to b.
Either rsums ('exp(-5* $\left.x^{\wedge} 2\right)$ ') or rsums $\exp \left(-5 * x^{\wedge} 2\right)$ creates the following plot.

Purpose Search for a symbolic expression's simplest form

Syntax	$r=\operatorname{simple}(S)$
$[r$, how $]=\operatorname{simple}(S)$	

Description
simple(S) tries several different algebraic simplifications of the symbolic expression S, displays any that shorten the length of S's representation, and returns the shortest. S is a sym. If S is a matrix, the result represents the shortest representation of the entire matrix, which is not necessarily the shortest representation of each individual element. If no return output is given, simple(S) displays all possible representations and returns the shortest.
[r, how] = simple(S) does not display intermediate simplifications, but returns the shortest found, as well as a string describing the particular simplification. r is a sym. how is a string.

Examples

Expression	Simplification	Simplification Method
$\cos (x)^{\wedge} 2+\sin (x)^{\wedge} 2$	1	simplify
$2^{*} \cos (x)^{\wedge} 2-\sin (x)^{\wedge} 2$	$3^{*} \cos (x)^{\wedge} 2-1$	simplify
$\cos (x)^{\wedge} 2-\sin (x)^{\wedge} 2$	$\cos \left(2^{*} x\right)$	combine (trig)
$\cos (x)+$ $\left(-\sin (x)^{\wedge} 2\right)^{\wedge}(1 / 2)$	$\cos (x)+i^{*} \sin (x)$	radsimp
$\cos (x)^{+} i^{\star} \sin (x)$	$\exp \left(i^{*} x\right)$	convert (exp)
$(x+1)^{*} x^{*}(x-1)$	$x^{\wedge} 3-x$	$\operatorname{collect}(x)$
$x^{\wedge} 3+3^{*} x^{\wedge} 2+3^{*} x+1$	$\left(x^{*}+1\right)^{\wedge} 3$	factor
$\cos \left(3^{*} \operatorname{acos}(x)\right)$	$4^{\star} x^{\wedge} 3-3^{*} x$	expand

See Also collect, expand, factor, horner, simplify

Purpose

Syntax
 R = simplify(S)

Description

Examples
simplify $\left(\sin (x)^{\wedge} 2+\cos (x)^{\wedge} 2\right)$ returns
1
simplify (exp(c*log(sqrt(a+b)))) returns $(a+b)^{\wedge}\left(1 / 2^{*} c\right)$

The statements

$$
\begin{aligned}
& S=\left[\left(x^{\wedge} 2+5^{*} x+6\right) /(x+2), \operatorname{sqrt}(16)\right] ; \\
& R=\text { simplify }(S)
\end{aligned}
$$

return

$$
R=[x+3,4]
$$

See Also
collect, expand, factor, horner, simple

single

Purpose Convert symbolic matrix to single precision

Syntax single(s)

Description single(S) converts the symbolic matrix S to a matrix of single-precision floating-point numbers. S must not contain any symbolic variables, except 'eps'.

See Also
 sym, vpa, double

Purpose

$$
Y=\operatorname{sinint}(X)
$$

Sine integral function

Syntax Description
 Syntax Description

sinint (X) evaluates the sine integral function at the elements of X, a numeric matrix, or a symbolic matrix. The result is a numeric matrix. The sine integral function is defined by

$$
S i(x)=\int_{0}^{x} \frac{\sin t}{t} d t
$$

Examples
sinint([pi 0;-2.2 exp(3)]) returns
$1.8519 \quad 0$
-1.6876 1.5522
sinint(1.2) returns 1.1080 .
diff(sinint(x)) returns $\sin (x) / x$.
See Also
cosint

Purpose Symbolic matrix dimensions

Syntax \quad| $d=\operatorname{size}(A)$ | |
| :--- | :--- |
| | $[m, n]=\operatorname{size}(A)$ |
| | $d=\operatorname{size}(A, n)$ |

Description Suppose A is an m-by-n symbolic or numeric matrix. The statement $d=\operatorname{size}(A)$ returns a numeric vector with two integer components, $d=[m, n]$.

The multiple assignment statement [m,n] = size(A) returns the two integers in two separate variables.

The statement $d=\operatorname{size}(A, n)$ returns the length of the dimension specified by the scalar n. For example, size $(A, 1)$ is the number of rows of A and size $(A, 2)$ is the number of columns of A.

Examples
The statements

```
syms a b c d
A = [a b c ; a b d; d c b; c b a];
d = size(A)
r = size(A, 2)
```

return
d $=$
43
$r=$
3

See Also length, ndims in the online MATLAB Function Reference

Purpose
Syntax

Description

Examples

```
solve('a*x^2 + b*x + c') returns
```

 [\(1 / 2 / a^{*}\left(-b+\left(b^{\wedge} 2-4^{*} a^{*} c\right)^{\wedge}(1 / 2)\right)\),
 \(\left.1 / 2 / a^{*}\left(-b-\left(b^{\wedge} 2-4^{*} a^{*} c\right)^{\wedge}(1 / 2)\right)\right]\)
 solve('a*x^2 + b*x + c', 'b') returns
$-\left(a * x^{\wedge} 2+c\right) / x$
$S=$ solve ('x $\left.+y=1^{\prime},{ }^{\prime} x-11^{*} y=5^{\prime}\right)$ returns a structure S with
$S . y=-1 / 3, S . x=4 / 3$
$A=\operatorname{solve}\left({ }^{\prime} a^{*} u^{\wedge} 2+v^{\wedge} 2^{\prime}, \quad ' u-v=1^{\prime},{ }^{\prime} a^{\wedge} 2-5 * a+6{ }^{\prime}\right)$
returns
$A=$
$\left.\begin{array}{l}\text { a: }\left[\begin{array}{ll}4 \times 1 & \text { sym }\end{array}\right] \\ \mathrm{u}: \\ \mathrm{v}:\left[\begin{array}{ll}4 \times 1 & \text { sym }\end{array}\right] \\ 4 \times 1 \\ \text { sym }\end{array}\right]$
where

$$
\text { A.a }=
$$

[2]
[2]
[3]
[3]
A. $u=$
[$\left.1 / 3+1 / 3^{*} i^{*} 2^{\wedge}(1 / 2)\right]$
[$\left.1 / 3-1 / 3^{*} i^{*} 2^{\wedge}(1 / 2)\right]$
[$\left.1 / 4+1 / 4 * i * 3^{\wedge}(1 / 2)\right]$
[$\left.1 / 4-1 / 4 * i * 3^{\wedge}(1 / 2)\right]$

$$
\begin{aligned}
& \text { A.v }= \\
& {\left[\begin{array}{l}
{\left[-2 / 3+1 / 3^{*} i^{*} 2^{\wedge}(1 / 2)\right]} \\
{\left[-2 / 3-1 / 3^{*} i^{*} 2^{\wedge}(1 / 2)\right]} \\
{\left[-3 / 4+1 / 4^{*} i^{*} 3^{\wedge}(1 / 2)\right]} \\
{\left[-3 / 4-1 / 4 * i * 3^{\wedge}(1 / 2)\right]}
\end{array}\right.}
\end{aligned}
$$

See Also

arithmetic operators, dsolve, findsym

Purpose

Syntax
 sort(v)

Description

Examples
Sort symbolic vectors or polynomials lexicographic order.
$Y=\operatorname{sort}(\mathrm{V})$ sorts the elements of a symbolic vector V in numerical or
$Y=\operatorname{sort}(P)$ sorts the terms in a polynomial P in order of decreasing powers.

```
syms a b c d e x
sort(sym(magic(3))) = [1,2,3,4,5,6,7,8,9]
sort([a c e b d]) = [a b c d e]
sort([a c e b d]*x.^(0:4).') =
d*x^4 + b*x^3 + e*x^2 + c*x + a
```

See Also sym2poly, coeffs

Purpose Rewrite a symbolic expression in terms of common subexpressions

Syntax \quad| $[\mathrm{Y}$, SIGMA $]$ | $=\operatorname{subexpr}(\mathrm{X}$, SIGMA $)$ |
| ---: | :--- |
| $[\mathrm{Y}$, SIGMA $]$ | $=\operatorname{subexpr}(\mathrm{X}$, 'SIGMA' $)$ |

Description

Examples

[Y,SIGMA] = subexpr(X,SIGMA) or [Y,SIGMA] = subexpr(X,'SIGMA') rewrites the symbolic expression X in terms of its common subexpressions. These are the subexpressions that are written as $\% 1, \% 2$, etc. by pretty (S).

The statements

```
t = solve('a*x^3+b*x^2+c*x+d = 0');
[r,s] = subexpr(t,'s');
```

return the rewritten expression for t in r in terms of a common subexpression, which is returned in s.

See Also pretty, simple, subs

Purpose

Symbolic substitution in a symbolic expression or matrix

```
Syntax R = subs(S)
R = subs(S, new)
R = subs(S,old,new)
```


Description

Examples

Single Input.
Suppose a $=980$ and C1 = 3 exist in the workspace.
The statement

$$
y=\text { dsolve('Dy = -a*y') }
$$

produces

$$
y=C 1 * \exp (-a * t)
$$

Then the statement
subs (y)
produces

```
ans = 3*exp(-980*t)
```


Single Substitution.

subs ($\mathrm{a}+\mathrm{b}, \mathrm{a}, 4)$ returns $4+\mathrm{b}$.

Multiple Substitutions.

subs(cos(a)+sin(b), $a, b\},\{\operatorname{sym}(' a l p h a '), 2\})$ returns $\cos ($ alpha $)+\sin (2)$

Scalar Expansion Case.

subs(exp(a*t), 'a',-magic(2)) returns
[$\left.\exp (-t), \exp \left(-3^{*} t\right)\right]$
[$\left.\exp \left(-4^{*} t\right), \exp (-2 * t)\right]$

Multiple Scalar Expansion.

```
subs(x*y,{x,y},{[[0 1;-1 0}0],[\begin{array}{lll}{1}&{-1;-2 1}\end{array}]}) return
    0 -1
    2 0
```

See Also
simplify, subexpr

Purpose
Symbolic singular value decomposition

Syntax

sigma $=$ svd(A)
sigma $=\operatorname{svd}(v p a(A))$
[U,S,V] = svd(A)
$[\mathrm{U}, \mathrm{S}, \mathrm{V}]=\operatorname{svd}(\mathrm{vpa}(\mathrm{A}))$

Description

Examples

The statements
digits(3)
A = sym(magic(4));
svd(A)
svd(vpa(A))
[U,S,V] = svd(A)
return
[0]
[34]
[2*5^(1/2)]
[$\left.8^{*} 5^{\wedge}(1 / 2)\right]$
[.311e-6*i]
[4.47]
[17.9]
[34.1]

```
\(U=\)
    [ -. 500, .671, .500, -. 224]
[ -. 500, -. 224, -. 500, -.671]
[ -. 500, .224, -.500, .671]
[ -. 500, -.671, .500, .224]
\(\mathrm{S}=\)
\begin{tabular}{rrrrr}
{\([\)} & 34.0, & 0, & 0, & \(0]\) \\
{\([\)} & 0, & 17.9, & 0, & \(0]\) \\
{\([\)} & 0, & 0, & 4.47, & \(0]\) \\
{\([\)} & 0, & 0, & \(0, .835 \mathrm{e}-15]\)
\end{tabular}
\(\mathrm{V}=\)
[ -. 500, .500, .671, -. 224]
[ -. 500, -. 500, -. 224, -.671]
[ -. 500, -. 500, .224, .671]
[ -.500, .500, -.671, .224]
```

See Also
digits, eig, vpa

Purpose

Syntax

Description

Construct symbolic numbers, variables and objects

```
S = sym(A)
x = sym('x')
x = sym('x','real')
x = sym('x','unreal')
S = sym(A,flag) where flag is one of 'r','d', 'e', or 'f'.
```

S = sym(A) constructs an object S, of class 'sym', from A. If the input argument is a string, the result is a symbolic number or variable. If the input argument is a numeric scalar or matrix, the result is a symbolic representation of the given numeric values.
$x=\operatorname{sym}(' x$ ') creates the symbolic variable with name ' x ' and stores the result in x. $x=\operatorname{sym}\left({ }^{\prime} x^{\prime}\right.$, 'real') also assumes that x is real, so that conj (x) is equal to x. alpha $=\operatorname{sym}(' a l p h a ')$ and $r=\operatorname{sym}(' R h o ', ' r e a l ')$ are other examples. Similarly, k = sym('k', 'positive') makes k a positive (real) variable. $x=\operatorname{sym}(' x$ ', 'unreal') makes x a purely formal variable with no additional properties (i.e., ensures that x is neither real nor positive). See also the reference pages on syms.

Statements like pi = sym('pi') and delta = sym('1/10') create symbolic numbers that avoid the floating-point approximations inherent in the values of pi and $1 / 10$. The pi created in this way temporarily replaces the built-in numeric function with the same name.

S $=\operatorname{sym}(A, f l a g)$ converts a numeric scalar or matrix to symbolic form. The technique for converting floating-point numbers is specified by the optional second argument, which can be ' f ', ' r ', ' e ' or ' d '. The default is ' r '.
' f ' stands for "floating-point." All values are represented in the form
'1. $\mathrm{F}^{\prime} * 2^{\wedge}(e)$ or ' $-1 . \mathrm{F}^{\prime} * 2^{\wedge}(e)$ where F is a string of 13 hexadecimal digits and e is an integer. This captures the floating-point values exactly, but may not be convenient for subsequent manipulation. For example, $\operatorname{sym}(1 / 10, ~ ' f ') ~ i s ~$ '1.999999999999a' *2^(-4) because $1 / 10$ cannot be represented exactly in floating-point.
' r ' stands for "rational." Floating-point numbers obtained by evaluating expressions of the form $p / q, p^{*} p i / q$, sqrt (p), 2^q, and 10^q for modest sized integers p and q are converted to the corresponding symbolic form. This
effectively compensates for the roundoff error involved in the original evaluation, but may not represent the floating-point value precisely. If no simple rational approximation can be found, an expression of the form $p^{*} 2^{\wedge} q$ with large integers p and q reproduces the floating-point value exactly. For example, $\operatorname{sym}(4 / 3, ' r ')$ is ' $4 / 3$ ', but sym($1+\operatorname{sqrt}(5), ' r$ ') is 7286977268806824*2^(-51)
' e ' stands for "estimate error." The ' r ' form is supplemented by a term involving the variable 'eps', which estimates the difference between the theoretical rational expression and its actual floating-point value. For example, sym(3*pi/4) is $3 * \mathrm{pi} / 4-103^{*} \mathrm{eps} / 249$.
' d' stands for "decimal." The number of digits is taken from the current setting of digits used by vpa. Fewer than 16 digits loses some accuracy, while more than 16 digits may not be warranted. For example, with digits(10), $\operatorname{sym}\left(4 / 3, ' d\right.$ ') is 1.333333333 , while with digits digits(20), $\operatorname{sym}\left(4 / 3, d^{\prime}\right)$ is 1.3333333333333332593 , which does not end in a string of 3 's, but is an accurate decimal representation of the floating-point number nearest to 4/3.

See Also
digits, double, syms
eps in the online MATLAB Function Reference

Purpose
Syntax

Description

Examples

Short-cut for constructing symbolic objects

```
syms arg1 arg2 ...
syms arg1 arg2 ... real
syms arg1 arg2 ... unreal
```

syms arg1 arg2 ... is short-hand notation for

```
    arg1 = sym('arg1');
    arg2 = sym('arg2'); ...
```

syms arg1 arg2 ... real is short-hand notation for

```
    arg1 = sym('arg1','real');
    arg2 = sym('arg2','real'); ...
```

syms arg1 arg2 ... unreal is short-hand notation for
arg1 = sym('arg1','unreal');
arg2 = sym('arg2','unreal'); ...
syms arg1 arg2 ... positive is short-hand notation for
arg1 = sym('arg1','positive');
arg2 = sym('arg2','positive'); ...

Each input argument must begin with a letter and can contain only alphanumeric characters.
syms x beta real is equivalent to
x = sym('x','real'); beta = sym('beta','real');

To clear the symbolic objects x and beta of 'real' status, type syms x beta unreal

Note clear x will not clear the symbolic object x of its status 'real'. You can achieve this, using the commands syms x unreal or clear mex or clear
all. In the latter two cases, the Maple kernel will have to be reloaded in the MATLAB workspace. (This is inefficient and time consuming).

See Also sym

Purpose

Syntax

Description

Examples

See Also

Symbolic-to-numeric polynomial conversion
c = sym2poly(s)
sym2poly returns a row vector containing the numeric coefficients of a symbolic polynomial. The coefficients are ordered in descending powers of the polynomial's independent variable. In other words, the vector's first entry contains the coefficient of the polynomial's highest term; the second entry, the coefficient of the second highest term; and so on.

The commands

$$
\text { syms } x \text { u v; }
$$

sym2poly (x^3 - 2*x - 5)
return
$\begin{array}{llll}1 & 0 & -2 & -5\end{array}$
while sym2poly(u^4 - $3+5^{*} u^{\wedge} 2$) returns
$\begin{array}{lllll}1 & 0 & 5 & 0 & -3\end{array}$
and sym2poly(sin(pi/6)*v + exp(1)*v^2) returns
$\begin{array}{lll}2.7183 & 0.5000 & 0\end{array}$
poly2sym
polyval in the online MATLAB Function Reference
Purpose Symbolic summation

$$
\text { Syntax } \quad \begin{aligned}
r & =\operatorname{symsum}(s) \\
r & =\operatorname{symsum}(s, v) \\
r & =\operatorname{symsum}(s, a, b) \\
r & =\operatorname{symsum}(s, v, a, b)
\end{aligned}
$$

Description

Examples
symsum (s) is the summation of the symbolic expression s with respect to its symbolic variable k as determined by findsym from 0 to $\mathrm{k}-1$.
symsum (s, v) is the summation of the symbolic expression s with respect to the symbolic variable v from 0 to $\mathrm{v}-1$.
$\operatorname{symsum}(s, a, b)$ and $\operatorname{symsum}(s, v, a, b)$ are the definite summations of the symbolic expression from $v=a$ to $v=b$.

The commands
syms k n x
symsum(k^2)
return
$1 / 3^{*} k^{\wedge} 3-1 / 2^{*} k^{\wedge} 2+1 / 6 * k$
symsum(k) returns
$1 / 2^{*} \mathrm{k}^{\wedge} 2-1 / 2^{*} k$
symsum(sin(k*pi)/k,0,n) returns
$-1 / 2^{*} \sin \left(k^{*}(n+1)\right) / k+1 / 2^{*} \sin (k) / k /(\cos (k)-1) * \cos \left(k^{*}(n+1)\right)-$ 1/2* $\sin (k) / k /(\cos (k)-1)$
symsum($\mathrm{k}^{\wedge} 2,0,10$) returns
385
symsum($\left.x^{\wedge} k / s y m(' k!'), ~ k, 0, i n f\right)$ returns $\exp (x)$

Note The preceding example uses sym to create the symbolic expression k! in order to bypass the MATLAB expression parser, which does not recognize ! as a factorial operator.

See Also
findsym, int, syms

taylor

Purpose Taylor series expansion

Syntax \quad| r | $=\operatorname{taylor}(f)$ |
| ---: | :--- |
| r | $=\operatorname{taylor}(f, n, v)$ |
| r | $=\operatorname{taylor}(f, n, v, a)$ |

Description taylor (f, n, v) returns the ($n-1$)-order Maclaurin polynomial approximation to f, where f is a symbolic expression representing a function and v specifies the independent variable in the expression. v can be a string or symbolic variable.
taylor ($\mathrm{f}, \mathrm{n}, \mathrm{v}, \mathrm{a}$) returns the Taylor series approximation to f about a . The argument a can be a numeric value, a symbol, or a string representing a numeric value or an unknown.

You can supply the arguments n, v , and a in any order. taylor determines the purpose of the arguments from their position and type.

You can also omit any of the arguments n, v, and a. If you do not specify v, taylor uses findsym to determine the function's independent variable. n defaults to 6 .

The Taylor series for an analytic function $f(x)$ about the basepoint $x=\alpha$ is given below.

$$
f(x)=\sum_{n=0}^{\infty}(x-a)^{n} \cdot \frac{f^{(n)}(a)}{n!}
$$

This table describes the various uses of the taylor command and its relation to Taylor and MacLaurin series.
Mathematical Operation MATLAB

$\sum_{n=0}^{5} x^{n} \cdot \frac{f^{(n)}(0)}{n!} \quad$| syms x |
| :--- |
| taylor (f) |

Mathematical Operation

$$
\begin{aligned}
& \sum_{n=0}^{m} x^{n} \cdot \frac{f^{(n)}(0)}{n!}, m \text { is a positive integer } \\
& \sum_{n=0}^{5}(x-a)^{n} \cdot \frac{f^{(n)}(a)}{n!}, a \text { is a real number } \\
& m_{1} \\
& \sum_{n=0}\left(x-m_{2}\right)^{n} \cdot \frac{f^{(n)}\left(m_{2}\right)}{n!}
\end{aligned}
$$

m_{1}, m_{2} are positive integers

$$
\sum_{n=0}^{m}(x-a)^{n} \cdot \frac{f^{(n)}(a)}{n!}
$$

MATLAB

```
taylor(f,m)
```

m is a positive integer
taylor(f,a)
a is a real number
taylor(f,m1,m2)
m_{1}, m_{2} are positive
integers
taylor(f,m,a)
a is real and m is a
positive integer
a is real and m is a positive integer

In the case where f is a function of two or more variables $(f=f(x, y, \ldots))$, there is a fourth parameter that allows you to select the variable for the Taylor expansion. Look at this table for illustrations of this feature.

Mathematical Operation

$\sum_{n=0}^{5} \frac{y^{n}}{n!} \cdot \frac{\partial^{n}}{\partial y^{n}} f(x, y=0)$	$\operatorname{taylor}(\mathrm{f}, \mathrm{y})$

MATLAB

taylor(f,y)

Mathematical Operation

$\sum_{n=0}^{m} \frac{y^{n}}{n!} \cdot \frac{\partial^{n}}{\partial y^{n}} f(x, y=0)$
m is a positive integer
$\sum_{n=0}^{m} \frac{(y-a)^{n}}{n!} \cdot \frac{\partial^{n}}{\partial y^{n}} f(x, y=a)$
a is real and m is a positive integer
$\sum_{n=0}^{5} \frac{(y-a)^{n}}{n!} \cdot \frac{\partial^{n}}{\partial y^{n}} f(x, y=a)$
a is real

MATLAB

taylor (f,y,m) or taylor (f,m,y) m is a positive integer
taylor(f,m,y,a) a is real and m is a positive integer
taylor(f,y, a) a is real

See Also
findsym

Purpose

Syntax
 Description

Examples
taylortool('exp(x*sin(x))')
taylortool('sin(tan(x)) - tan(sin(x))')
See Also funtool, rsums
Purpose Symbolic lower triangle

Syntax	$\operatorname{tril}(X)$
	$\operatorname{tril}(X, K)$

Description
$\operatorname{tril}(\mathrm{X})$ is the lower triangular part of X .
$\operatorname{tril}(X, K)$ returns a lower triangular matrix that retains the elements of X on and below the k-th diagonal and sets the remaining elements to 0 . The values $\mathrm{k}=0, \mathrm{k}>0$, and $\mathrm{k}<0$ correspond to the main, superdiagonals, and subdiagonals, respectively.

Examples
Suppose

$$
\begin{aligned}
& A= \\
& {\left[\begin{array}{rrrr}
{[} & a, & b, & c
\end{array}\right]} \\
& {\left[\begin{array}{rlr}
1, & 2, & 3
\end{array}\right]} \\
& {\left[\begin{array}{lll}
& a+1, & b+2, \\
& c+3
\end{array}\right]}
\end{aligned}
$$

Then tril(A) returns
$\left.\begin{array}{rrrr}{\left[\begin{array}{rrr}a, & 0, & 0\end{array}\right]} \\ {\left[\begin{array}{rr}1, & 2,\end{array}\right.} & 0\end{array}\right]$
tril(A,1) returns

$$
[\quad a, b, 0 \text {] }
$$

$$
\left[\begin{array}{lll}
{[} & 1, & 2,
\end{array}\right]
$$

$$
[a+1, b+2, c+3]
$$

tril($\mathrm{A},-1$) returns

0 ,	0 ,	0
1,	0,	0
	+2,	0

See Also

diag, triu

Purpose
Symbolic upper triangle
Syntax
Description

Examples
Suppose

$$
\begin{aligned}
& A= \\
& {\left[\begin{array}{rrrr}
& a, & b, & c
\end{array}\right]} \\
& {\left[\begin{array}{rlr}
1, & 2, & 3
\end{array}\right]} \\
& {\left[\begin{array}{lll}
& a+1, & b+2, \\
\hline
\end{array}\right]}
\end{aligned}
$$

Then triu(A) returns
[a, b, c]
[0, 2, 3]
[$0,0, c+3$]
triu(A, 1) returns
[0, b, c]
[0, 0, 3]
[0, 0, 0]
triu(A, -1) returns
$\left[\begin{array}{lll}a, & b, & c\end{array}\right]$
$\left[\begin{array}{lll}1, & 2, & 3\end{array}\right]$
$\left[\begin{array}{lll}0, & b+2, & c+3\end{array}\right]$

See Also
diag, tril

uint8, uint 16, uint32, uint64

Purpose Convert symbolic matrix to unsigned 8-bit integers

Syntax \quad| uint8(S) |
| :--- |
| uint16(S) |
| uint32(S) |
| uint64(S) |

Description
uint8 (S) converts a symbolic matrix S to a matrix of unsigned 8-bit integers.
uint16(S) converts S to a matrix of unsigned 16-bit integers.
uint32 (S) converts S to a matrix of unsigned 32-bit integers.
uint64 (S) converts S to a matrix of unsigned 64-bit integers.

Note The output of uint8, uint16, uint32, and uint64 does not have type symbolic.

The following table summarizes the output of these four functions.

Function	Output Range	Output Type	Bytes per Element	Output Class
uint8	0 to 255	Unsigned 8-bit integer	1	uint8
uint16	0 to 65,535	Unsigned 16-bit integer	2	uint16
uint32	0 to 4,294,967,295	Unsigned 32-bit integer	4	uint32
uint64	0 to $18,446,744,073,709,551,615$	Unsigned 64 -bit integer	8	uint64

See Also
sym, vpa, single, double, int8, int16, int32, int64

Purpose

Syntax
 Description

Examples

Variable precision arithmetic
$R=\operatorname{vpa}(A)$
$R=\operatorname{vpa}(A, d)$
vpa (A) uses variable-precision arithmetic (VPA) to compute each element of A to d decimal digits of accuracy, where d is the current setting of digits. Each element of the result is a symbolic expression.
vpa (A, d) uses d digits, instead of the current setting of digits.
The statements
digits(25)
$q=\operatorname{vpa}(\sin (s y m(' p i ') / 6))$
$\mathrm{p}=\mathrm{vpa}(\mathrm{pi})$
w = vpa('(1+sqrt(5))/2')
return
$q=$
. 5000000000000000000000000
$p=3.141592653589793238462643$
w =
1.618033988749894848204587
vpa pi 75 computes π to 75 digits.
The statements
A $=\operatorname{vpa}(h i l b(2), 25)$
$B=\operatorname{vpa}(h i l b(2), 5)$
return
$\mathrm{A}=$
[1., .5000000000000000000000000]
[.50000000000000000000000000, .3333333333333333333333333]
$\mathrm{B}=$
$\left[\begin{array}{lr}{[.,} & .50000] \\ {[.50000,} & .33333]\end{array}\right.$

See Also digits, double

Purpose
Riemann Zeta function

Syntax

Description

Examples

$$
\begin{aligned}
& Y=\operatorname{zeta}(X) \\
& Y=\operatorname{zeta}(n, X)
\end{aligned}
$$

$$
\zeta(w)=\sum_{k=1}^{\infty} \frac{1}{k^{w}}
$$

zeta (X) evaluates the Zeta function at the elements of X, a numeric matrix, or a symbolic matrix. The Zeta function is defined by
zeta(n, X) returns the n-th derivative of zeta (X).

```
zeta(1.5) returns 2.6124.
zeta(1.2:0.1:2.1) returns
    Columns }1\mathrm{ through 7
        5.5916 3.9319 3.1055 2.6124 2.2858 2.0543 1.8822
    Columns 8 through 10
        1.7497 1.6449 1.5602
zeta([x 2;4 x+y]) returns
    [ zeta(x), 1/6*pi^2]
    [ 1/90*pi^4, zeta(x+y)]
diff(zeta(x),x,3) returns zeta(3,x).
```


Purpose z-transform

Syntax
$F=z t r a n s(f)$
$F=z \operatorname{trans}(f, w)$
F = ztrans(f,k,w)

Description $\quad F=z$ trans (f) is the z-transform of the scalar symbol f with default independent variable n. The default return is a function of z.

$$
f=f(n) \Rightarrow F=F(z)
$$

The z-transform of f is defined as

$$
F(z)=\sum_{0}^{\infty} \frac{f(n)}{z^{n}}
$$

where n is f 's symbolic variable as determined by findsym. If $f=f(z)$, then $z t r a n s(f)$ returns a function of w.

$$
F=F(w)
$$

$F=z \operatorname{trans}(f, w)$ makes F a function of the symbol w instead of the default z.

$$
F(w)=\sum_{0}^{\infty} \frac{f(n)}{w^{n}}
$$

$F=z \operatorname{trans}(f, k, w)$ takes f to be a function of the symbolic variable k.

$$
F(w)=\sum_{0}^{\infty} \frac{f(k)}{w^{k}}
$$

Examples

Z-Transform	MATLAB Operation
$\begin{aligned} & f(n)=n^{4} \\ & Z[f]=\sum_{n=0}^{\infty} f(n) z^{-n} \\ & =\frac{z\left(z^{3}+11 z^{2}+11 z+1\right)}{(z-1)^{5}} \end{aligned}$	$f=n \wedge 4$ ztrans(f) returns $z^{\star}\left(z^{\wedge} 3+11^{*} z^{\wedge} 2+11^{*} z+1\right) /(z-1)^{\wedge} 5$
$\begin{aligned} & g(z)=a^{z} \\ & Z[g]=\sum_{z=0}^{\infty} g(z) w^{-z} \\ & =\frac{w}{a-w} \end{aligned}$	$\begin{aligned} & g=a^{\wedge} z \\ & \text { simplify }(z \operatorname{trans}(g)) \\ & \text { returns } \\ & -w /(-w+a) \end{aligned}$
$\begin{aligned} & f(n)=\sin a n \\ & Z[f]=\sum_{n=0}^{\infty} f(n) w^{-n} \\ & =\frac{w \sin a}{1-2 w \cos a+w^{2}} \end{aligned}$	$f=\sin (a * n)$ ztrans(f,w) returns $w^{*} \sin (a) /\left(w^{\wedge} 2-2^{*} w^{*} \cos (a)+1\right)$

ztrans

Symbols

- 3-8
* 3-8
$+3-8$
. 3-8
. 3-8
. / 3-8
. ^3-9
. 3-9
/ 3-8
@sym directory 1-16
(2-65, 3-8
- 3-9
' 3-9

A

abstract functions 1-14
Airy differential equation 2-96
Airy function 2-96, 2-98
algebraic equations
solving 3-121
arithmetic operations 3-8
left division
array 3-8
matrix 3-8
matrix addition 3-8
matrix subtraction 3-8
multiplication
array 3-8
matrix 3-8
power
array 3-9
matrix 3-9
right division
array 3-8
matrix 3-8
transpose
array 3-9
matrix 3-9

B

backslash operator 2-65
Bernoulli polynomials 2-98
Bessel functions 2-99
differentiating 2-5
integrating 2-13
besselj 2-5
besselk 2-96
beta function 2-99
binomial coefficients 2-98

C

calculus 2-2
example 2-20
extended example 2-28
ccode 3-11
ceil 3-12
characteristic polynomial 2-69, 2-71, 3-106
Chebyshev polynomial 2-100
circulant matrix 1-14, 2-52
clear 1-13
clearing variables
Maple workspace 1-13
MATLAB workspace 1-13, 3-131
coeffs 3-13
collect 2-42, 3-14
colspace 3-15
column space 2-66
complementary error function 2-99
complex conjugate 3-17
complex number
imaginary part of 3-72
real part of 3-112
complex symbolic variables 1-13
compose 3-16
conj 1-13, 3-17
converting symbolic matrices to numeric form 1-12
cosine integral function 3-18
cosine integrals 2-99
cosint 3-18

D

Dawson's integral 2-99
decimal symbolic expressions 1-11
default symbolic variable 1-10
definite integration 2-12
$\operatorname{det} 3-19$
diag 3-20
diff 2-2, 3-22
differentiation 2-2
diffraction 2-100
digamma function 2-99
digits 1-12, 3-23
dirac 3-24
Dirac Delta function 2-99
discrim 2-85
double 3-25
converting to floating-point with 2-61
dsolve 2-93, 3-26

E

eig 2-68, 3-29
eigenvalue trajectories 2-78
eigenvalues 2-68, 2-79, 3-29
computing 2-68
eigenvector 2-69
elliptic integrals 2-99
eps 1-11
error function 2-99
Euler polynomials 2-98
expand $2-43,3-32$
expm 3-31
exponential integrals 2-99
Extended Symbolic Math Toolbox 1-3, 2-109, 3-100
orthogonal polynomials included with 2-99
ezcontour 3-33

F

factor 3-51
example 2-44
factorial function 1-14
factorial operator 3-135
findsym 3-52
finverse 3-53
fix 3-54
floating-point arithmetic 2-58
IEEE 2-59
floating-point symbolic expressions 1-11
floor 3-55
format 2-58
fortran 3-56
fourier 3-57
Fourier transform 3-57
frac 3-60
Fresnel integral 2-99
function calculator 3-61
functional composition 3-16
functional inverse 3-53
funtool 3-61

Index-2

G

gamma function 2-99
Gegenbauer polynomial 2-99
generalized hypergeometric function 2-99
Givens transformation 2-63, 2-72
golden ratio 1-6

H

harmonic function 2-99
heaviside 3-64
Heaviside function 2-99
Hermite polynomial 2-99
Hilbert matrix 1-12, 2-64
horner 3-65
example 2-43
hyperbolic cosine function 2-99
hyperbolic sine function 2-99
hypergeometric function 2-99

I

IEEE floating-point arithmetic 2-59
ifourier 3-67
ilaplace 3-70
imag 3-72
incomplete gamma function 2-99
initializing the Maple kernel 3-91
initstring variable 3-91
int 2-11, 3-73
example 2-11
int16 3-74
int32 3-74
int64 3-74
int 8 3-74
integration 2-11
definite 2-12
with real constants 2-13
inv 3-75
inverse Fourier transform 3-67
inverse Laplace transform 3-70
inverse z-transform 3-77
iztrans 3-77

J

Jacobi polynomial 2-100
jacobian 2-6, 3-79
Jacobian matrix 2-6, 3-79
jordan 3-80
example 2-74
Jordan canonical form 2-74, 3-80

L

Laguerre polynomial 2-99
Lambert's W function 2-99, 3-82
lambertw 3-82
laplace 3-83
Laplace transform 3-83
latex 3-85
left division
array 3-8
matrix 3-8
Legendre polynomial 2-100
limit 2-8, 3-86
limits 2-8
undefined 2-10
linear algebra 2-63
log10 3-87
log2 3-88
logarithm function 2-99
logarithmic integral 2-99

M

machine epsilon 1-11
Maclaurin series 2-19
Maple 1-2
maple 3-89
output argument 2-107
Maple functions
accessing 1-14, 2-103
Maple help 3-102
Maple kernel
accessing 3-89
initializing 3-91
Maple library 3-91
Maple Orthogonal Polynomial Package 3-100
Maple packages 2-109
loading 2-109
Maple procedure 2-1, 2-109, 3-109
installing 3-109
writing 2-111
mapleinit 3-91
matrix
addition 3-8
condition number 2-66
diagonal 3-20
exponential 3-31
inverse 3-75
left division 3-8
lower triangular 3-140
multiplication 3-8
power 3-9
rank 3-111
right division 3-8
size $3-120$
subtraction 3-8
transpose 3-9
upper triangular 3-141
M-file
creating 1-16
mfun 2-98, 3-92
mfunlist 3-93
mhelp 3-102
$\bmod 3-103$
multiplication
array 3-8
matrix $3-8$

N

null 3-104
null space 2-66
null space basis 3-104
numden 3-105
numeric symbolic expressions 1-11

0

ordinary differential equations solving 3-26
orthogonal polynomials 2-99, 3-100

P

poly 2-69, 3-106
poly2sym 3-107
polygamma function 2-99
polynomial discriminants 2-85
power
array 3-9
matrix 3-9
pretty 3-108
example 2-19
procread 2-112, 3-109

Index-4

Q

quorem 3-110

R

rank 3-111
rational arithmetic 2-59
rational symbolic expressions 1-11
real 3-112
real property 1-13
real symbolic variables 1-13
reduced row echelon form 3-114
Riemann sums
evaluating 3-115
Riemann Zeta function 2-98, 3-145
right division
array 3-8
matrix 3-8
Rosser matrix 2-70
round 3-113
rref 3-114
rsums 3-115

S

shifted sine integral 2-99
simple 2-46, 3-116
simplifications 2-41
simplify 2-46, 3-117
simultaneous differential equations solving 2-95-2-96
simultaneous linear equations
solving systems of 2-65, 2-92
sine integral function 3-119
sine integrals 2-99
single 3-118
singular value decomposition 2-75, 3-127
sinint 3-119
solve 2-89, 3-121
solving equations $2-89$
algebraic 2-89, 3-121
ordinary differential 2-93, 3-26
sort 3-123
special functions 2-98
evaluating numerically 3-92
listing 3-93
spherical coordinates 2-6
subexpr 2-50, 3-124
subexpressions 2-50
subs $2-52,3-125$
substitutions 2-50
in symbolic expressions 3-125
summation
symbolic 2-18
svd 2-76, 3-127
sym 1-6, 1-7, 1-12, 1-14, 3-129
sym2poly 3-133
symbolic expressions 2-89
C code representation of $3-11$
creating 1-6
decimal 1-11
differentiating 3-22
expanding 3-32
factoring 3-51
finding variables in 3-52
floating-point 1-11
Fortran representation of 3-56
integrating 3-73
LaTeX representation of 3-85
limit of 3-86
numeric 1-11
prettyprinting 3-108
rational 1-11
simplifying 3-116, 3-117, 3-124
substituting in 3-125
summation of 3-134
Taylor series expansion of 3-136
symbolic math functions
creating 1-16
symbolic math programs
debugging 2-107
writing 2-103
symbolic matrix
computing eigenvalue of 2-71
converting to numeric form 1-12
creating 1-14
differentiating 2-5
symbolic objects
about 1-4
creating 3-129, 3-131
symbolic polynomials
converting to numeric form 3-133
creating from coefficient vector 3-107
Horner representation of 3-65
symbolic summation 2-18
symbolic variables
clearing 3-131
complex 1-13
creating 1-6
real 1-13
syms 1-7, 3-131
symsize 3-120
symsum 2-18, 3-134

T

taylor 2-18, 3-136
Taylor series 2-18
Taylor series expansion 3-136
taylortool 3-139
trace mode 2-107
transpose
array 3-9
matrix 3-9
tril 3-140
triu 3-141

U

uint16 3-142
uint32 3-142
uint64 3-142
uint8 3-142

v

variable-precision arithmetic 2-58, 3-143
setting accuracy of 3-23
variable-precision numbers 2-60
vpa 2-60, 3-143

Z

zeta 3-145
ztrans 3-146
z-transform 3-146

Index-6

[^0]: See Also

